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Session goals

• What is a cause, and what is causal inference?
• How can causation be established?
• How can we make the statistical study of causation formal?
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Road map

1. Causality and etiology
2. The counterfactual framework

I A causal model
I Causal estimands

3. Confounding and exchangeability
I Randomized trials
I Confounding
I Exchangeability
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Causality

• According to Miettinen & Karp (2012, p. 35),
“Epidemiological research is, almost exclusively, concerned
with etiology of illness”.

• Knowledge of etiology, defined as (Miettinen 2011, p. 12)
Concerning a case of an illness, or a rate of occurrence of
an illness, its causal origin (in the case of a disease or
defect, specifically, the causation of the inception and/or
progression of its pathogenesis); also: concerning a
sickness or an illness in general (in the abstract), its
causal origin in general,

is particularly important for the practice of epidemiology.
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Causality

Messerli (2012), New England Journal of Medicine
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Causality
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Causality

7



Causality

• Some of the earliest, and best known, ideas in epidemiology on
causality are the criteria for causality given by Sir Austin
Bradford-Hill in 1965:

1. Strength
2. Consistency (reproducibility)
3. Specificity
4. Temporality
5. Biological gradient
6. Plausibility
7. Coherence
8. Experiment
9. Analogy

• A group of minimal conditions needed to establish causality.
• But are they all equally convincing? Sufficiently formal?
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Causality

• There is no agreement on the definition of causality, or even
whether it exists in the objective physical reality.

• Jaynes (2003) adopts a determinist position originating from
Laplace, where the present state of the universe is determined
by its past states, the present state then being an effect of the
past states and a cause of the future states.

• This interpretation is also compatible with the information
based interpretation of probability, according to which in the
case of complete information there is no randomness.

• Determinism precludes some other interpretations of causality
based on interventions (manipulations) or potential outcomes
[to be defined], since determinism rules out free will and hence
interventions, unless we then view interventions as
deterministic.
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Causality

• In the key reference book called ‘Causality’, Pearl (2009)
sidesteps the issue of defining causality altogether, but does
describe causal relationships as being “stable” and
“ontological”, and indicates a “preference toward Laplace’s
quasi-deterministic conception of causality” (p. 25-26).
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Causality

• Miettinen & Karp (2012, p. 43) note that causality is inherently
unobservable, making causal inferences particularly
challenging:

Research on etiogenesis of morbidity – or of illness per se
– is, by the very nature of this genre of causation in
medicine, generally bound to be non-experimental; but a
much greater added challenge is that causation is not a
phenomenon, subject to observation; it is a ‘conception a
priori,’ a noumenon (Kant), needing to be inferred from
phenomenal patterns.

11



Causality

• Studying etiology indirectly through observational patterns is
possible, by what Miettinen calls the etiologic study:

But as etiogenesis is but an unobservable noumenon, the
inescapably needed case series is to be an element in
documentation of a phenomenon: the cases’ rate of
occurrence in a defined study base, the necessary added
element being a sample of that study base, a base series,
that is.
The case and base series, considered jointly, allow for
documentation of the relative levels of the rates of the
cases’ occurrence in segments of the study base, and of
interest here are the rates for the index and reference
segments of the study base – the rates for those with a
positive history for the etiogenetic factor and for its
alternative, respectively.
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Causality

• In practice, of course, the major challenge in any observational
study of etiology is confounding:

When, as is usual, the index and reference segments of
the study base have different distributions by extraneous
determinants of the cases’ occurrence, control of this
confounding is needed.
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Causality

• The rest of this course deals with methods for controlling of
confounding, either through study design or through
modelling.

• Before this, however, we need to understand expressly what
confounding is, and to do this we need to introduce a causal
model.

• Through this causal model, we can define an explicit causal
parameter and causal contrast, which is necessary to interpret
confounding.
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Some concepts, cross-sectionally

In a cross-sectional setting, confounding is loosely defined as the
exposure and response having a common cause:

Including the common cause in a regression model “breaks” the
confounding, allows estimation of the true exposure effect.
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Some concepts, cross-sectionally

An intermediate (mediating, intervening) variable is caused by the
exposure of interest and causes the response:

Predictor
of interest Response

Intermediate
variable

?

Including such a variable in a regression model affects the
interpretation of the exposure parameter: total effect (direct and
indirect) of exposure cannot be estimated.
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Some concepts, cross-sectionally
What if a variable is caused by the exposure, but does not affect the
response?

Predictor  
of interest 

Unmeasured 
  risk factor 

Response Covariate 

Conditioning on the “descendant” of exposure leads to
collider-stratification bias.
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Some concepts, cross-sectionally

Abacavir 
regimen 

IDU 

HCV  
HAART 
interruption 
 

Selecting or conditioning on HAART interruption asks: “Among
people who are (or are not) on a HAART interruption, is there an
association between being prescribed in ABC-containing regimen
and acquiring HCV?”
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The central causal question

• As we have discussed, in most research domains, the objective
of an investigation is to quantify the effect on a measurable
outcome of changing one of the conditions under which the
outcome is measured.

• The central statistical challenge is that, unless the condition of
interest is changed independently, the inferred effect may be
subject to the influence of other variables.

• Key point: It is essential to think about causation, or at least
the underlying data-generating mechanism, in order to decide
what variables to include in a regression model and how to
analyze the data.
Knowing that a variable is associated with the exposure and
with the outcome is not enough to determine whether it is a
confounding variable or an intermediate variable.
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The language of causal inference

We seek to quantify the effect on an outcome of changes in the value
of an exposure or treatment.

• Outcome: could be
I binary;
I integer-valued;
I continuous-valued.

• Exposure: could be
I binary;
I integer-valued;
I continuous-valued.

• Study: could be
I cross-sectional (single time point);
I longitudinal (multiple time points), with single or multiple

exposures.

We consider the impact of an intervention to change exposure status.

20



Notation

We adopt the following notation: let
• i index individuals included in the study;
• Yi denote the outcome for individual i;
• Zi denote the exposure for individual i;
• Xi denote the values of other predictors or covariates.

For a cross-sectional study, Yi and Zi will be scalar-valued; for the
longitudinal case, Yi and Zi may be vector valued. Xi is typically
vector-valued at each measurement time point.

We will treat these variables as random quantities, and regard them
as samples from an infinite population, rather than a finite
population.
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The counterfactual framework

• Although other causal models exist, here we will concentrate
on the well known Rubin’s causal model (Rubin 1978;
Rosenbaum & Rubin 1983; Holland 1986).

• This is equivalent to the use of what is known as potential
outcomes or counterfactual notation.

• Let’s focus on an intervention Zi that is a binary indicator of
whether treatment (1) or placebo (0) is administered to
individual i:

I zi = 1, representing the treatment or exposure, and zi = 0,
representing the reference level (e.g. no treatment, placebo).

• Now suppose that each individual has two potential outcomes
(Yi(0),Yi(1)), corresponding to each possible treatment
assignment (if there were more than two treatment alternatives,
more potential outcomes would be defined accordingly).
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The counterfactual framework

• Some take a philosophical view that potential or counterfactual
outcomes may be thought to “exist” (“many-worlds”
interpretation of quantum mechanics, http://en.
wikipedia.org/wiki/Many-worlds_interpretation).

• ...but I think they are best interpreted as useful tools (mental
constructs) corresponding to what-if types of structures in
language.

• Only one of the outcomes is realized and observed
(observable), given by

Yi = Yi(0)(1− Zi) + Yi(1)Zi.

23

http://en.wikipedia.org/wiki/Many-worlds_interpretation
http://en.wikipedia.org/wiki/Many-worlds_interpretation


The counterfactual framework

If exposure is multi-valued, the potential outcomes

{Yi(z1),Yi(z2), . . . ,Yi(zd)}

represent the outcomes that would result for individual i if that
subject exposed to exposure level z1,z2, . . . ,zd respectively.

The observed outcome, Yi, may then be written in terms of the
potential outcomes and the observed exposure, Zi, as

Yi =

d∑
j=1

1zj(Zi)Yi(zj).

where 1A(Z) is the indicator random variable for the set A, with
1A(Z) = 1 if Z ∈ A, and zero otherwise.
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The counterfactual framework

If exposure is continuous-valued, the potential outcomes

{Yi(z),z ∈ Z}

represent the outcomes that would result for individual i if that
subject exposed to exposure level z which varies in the set Z .
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Binary Exposures

For a binary exposure, we define the causal effect of exposure by
considering contrasts between Yi(0) and Yi(1); for example, we
might consider

• Additive contrasts
Yi(1)− Yi(0)

• Multiplicative contrasts

Yi(1)/Yi(0)

• However only one of the potential outcomes may be observed,
and so this individual level effect is not identifiable.

• Holland (1986, p. 947) calls this the fundamental problem of
causal inference.

• In practice, we consider the causal effect of exposure to be
defined by contrasts in (expected) potential outcomes
corresponding to different exposure levels.
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Continuous Exposures

For a continuous exposure, we might consider the path tracing how
Yi(z) changes as z changes across some relevant set of values.

This leads to a causal dose-response function.

Example: Occlusion Therapy for Amblyopia

We might seek to study the effect of occlusion therapy (patching)
on vision improvement of amblyopic children. Patching ‘doses’ are
measured in terms of time for which the normal functioning
(“fellow”) eye is patched.

As time is measured continuously, we may consider how vision
improvement changes for any relevant dose of occlusion.
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Expected counterfactuals

In general, we are interested in population or subgroup, rather than
individual level causal effects. The potential outcomes are random
quantities. Therefore, we more typically consider expected potential
outcomes

E[Yi(z)]
or contrasts of these quantities.

We might also consider subgroup conditional expected quantities

E[Yi(z)|i ∈ S]

where S is some stratum of interest in the general population.

We typically assume that subject i is randomly sampled from the
population or stratum, so that these individual-level expectations
are representative of the population.
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Expected counterfactuals: population-level contrasts

• Miettinen (2011, p. 84) notes that
The causal contrast - cause versus its alternative - does
not have as its referent instances that differ in this respect
(cause present in some, the alternative in others).
Instead, the contrast has to do with all of the instances of
the study domain (and study base) in the same way: the
contrast is between all instances of the domain with the
cause present (hypothetically) versus all of them with the
alternative present (hypothetically). The contrast has to
do with two mutually exclusive possibilities in each
instance of the study domain, at least one of them a
hypothetical (counterfactual).

• Thus Miettinen’s definitions for causal concepts should be
understood in terms of Rubin’s causal model.
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Expected counterfactuals: binary exposure

For a binary exposure, we might consider the average effect of
exposure (or average treatment effect, ATE) defined as

E[Yi(1)− Yi(0)] = E[Yi(1)]− E[Yi(0)]

If the outcome is also binary, we note that

E[Yi(z)] ≡ Pr[Yi(z) = 1]

so may also consider odds or odds ratios quantities

Pr[Yi(z) = 1]
Pr[Yi(z) = 0]

Pr[Yi(1) = 1]/Pr[Yi(1) = 0]
Pr[Yi(0) = 1]/Pr[Yi(0) = 0]

.
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Expected counterfactuals: binary exposure (cont.)

We may also consider quantities such as the

average treatment effect on the treated, ATT

defined as
E[Yi(1)− Yi(0)|Zi = 1]

although such quantities can be harder to interpret.

The utility of the potential outcomes formulation is evident in this
definition.
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Expected counterfactuals: binary exposure (cont.)

Example: Antidepressants and autism
Antidepressants are quite widely prescribed and for a variety of mental
health concerns. However, patients can be reluctant to embark on a course
of antidepressants during pregnancy. We might wish to investigate, in a
population of users (and potentials users) of antidepressants, the incidence
of autism-spectrum disorder in early childhood and to assess the causal
influence of antidepressant use on this incidence.

• Outcome: binary, recording the a diagnosis of autism-spectrum
disorder in the child by age 5;

• Exposure: antidepressant use during 2nd or 3rd trimester of
pregnancy.

Then we may wish to quantity

E[Yi(antidepressant)− Yi(no antidepressant)|Antidep. actually used].
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The randomized study

The approach that intervenes to set exposure equal to z for all
subjects, however, does not facilitate comparison of APOs for
different values of z.

Therefore consider a study design based on randomization; consider
from simplicity the binary exposure case. Suppose that a random
sample of size 2n is obtained, and split into two equal parts.

• the first group of n are assigned the exposure and form the
‘treated’ sample,

• the second half are left ‘untreated’.
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The randomized study (cont.)

For both the treated and untreated groups we may use the previous
logic, and estimate the ATE

E[Yi(1)− Yi(0)] = E[Yi(1)]− E[Yi(0)]

by the difference in means in the two groups, that is

1
n

n∑
i=1

Yi −
1
n

2n∑
i=n+1

Yi.

The key idea here is that the two halves of the original sample are
exchangeable with respect to their properties; the only systematic
difference between them is due to exposure assignment.
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The randomized study (cont.)

In a slightly modified design, suppose that we obtain a random
sample of size n from the study population, but then assign
exposure randomly to subjects in the sample: subject i receives
treatment with probability p.

• if p = 1/2, then there is an equal chance of receiving treatment
or not;

• we may choose any value of 0 < p < 1.

In the final sample, the number treated, n1, is a realization of a
random variable N1 where

N1 ∼ Binomial(n, p).
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The randomized study (cont.)

This suggests the estimators

Ê[Y (z)] =

n∑
i=1

1z(Zi)Yi

n∑
i=1

1z(Zi)
z = 0, 1 (1)

where the indicators 1z(Zi) identify those individuals that received
treatment z.

• If the treatment assignment is completely randomized, it may
be assumed that

(Yi(0),Yi(1)) ⊥⊥ Zi.
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The randomized study (cont.)

• With this assumption, the difference of the sample means in the
treated and untreated groups:∑n

i=1 ZiYi∑n
i=1 Zi

−
∑n

i=1(1− Zi)Yi∑n
i=1(1− Zi)

=

∑n
i=1 Zi[Yi(0)(1− Zi) + Yi(1)Zi]∑n

i=1 Zi
−

∑n
i=1(1− Zi)[Yi(0)(1− Zi) + Yi(1)Zi]∑n

i=1(1− Zi)

≈ 1
n

n∑
i=1

ZiYi(1)
Pr(Zi = 1)

− 1
n

n∑
i=1

(1− Zi)Yi(0)
Pr(Zi = 0)

,

consistently estimates the average causal effect.
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The randomized study (cont.)

• This is because

E

[
1
n

n∑
i=1

ZiYi(1)
Pr(Zi = 1)

]

=
1
n

n∑
i=1

∫
Yi(0),Yi(1)

1∑
Zi=0

ZiYi(1)
Pr(Zi = 1)

f (Yi(0),Yi(1) | Zi)f (Zi) dYi(0) dYi(1)

=
1
n

n∑
i=1

∫
Yi(0),Yi(1)

Yi(1)
Pr(Zi = 1)

f (Yi(0),Yi(1) | Zi = 1)Pr(Zi = 1) dYi(0) dYi(1)

=
1
n

n∑
i=1

∫
Yi(0),Yi(1)

Yi(1)f (Yi(0),Yi(1)) dYi(0) dYi(1)

=
1
n

n∑
i=1

∫
Yi(1)

Yi(1)f (Yi(1)) dYi(1)

= E[Yi(1)].

38



The randomized study (cont.)

• Similarly,

E

[
1
n

n∑
i=1

(1− zi)Yi(0)
Pr(Zi = 0)

]
= E[Yi(0)].

• Note that the outcome here could just as easily have been
binary, the causal contrast of interest then being for a risk
difference.
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The randomized study (cont.)

Note that for the denominator,

n∑
i=1

11(Zi) ∼ Binomial(n, p)

so we may consider replacing the denominators by their expected
values

np and n(1− p)

respectively for z = 0, 1. This yields the estimators

Ê[Y (1)] =
1
np

n∑
i=1

11(Zi)Yi Ê[Y (0)] =
1

n(1− p)

n∑
i=1

10(Zi)Yi.

(2)
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The randomized study (cont.)

Note
The estimators in (1) are more efficient than the estimators in (2),
that is, they have lower variances.

It is more efficient to use an estimated value of p

p̂ =
N1

n

than p itself.
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Confounding & exchangeability

• Many writers reasoning in terms of Rubin’s causal model
(e.g. Holland 1986, p. 946 and Miettinen 2011, p. 110) make
the further restriction that a cause must be something that is
(at least in principle) manipulable, that is, both exposure to the
cause and its alternative must be possible in each instance.

• “No causation without manipulation” !
• This is often stated as a further assumption called positivity,

which says that both

Pr(Zi = 1) > 0 and Pr(Zi = 0) > 0

for all i = 1, . . . , n, which prevents division by zero in the
above equations.

• (Similar to the idea of no extrapolation in regression.)
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Confounding

• However, this restriction is particular to Rubin’s causal model,
which originates from randomized controlled trial settings, and
does not necessarily correspond to a common (non-statistical)
meaning of cause.

• As noted by Pearl (2009, p. 361)
Surely we have causation without manipulation. The
moon causes tides, race causes discrimination, and sex
causes the secretion of certain hormones and not others.
Nature is a society of mechanisms that relentlessly sense
the values of some variables and determine the values of
others; it does not wait for a human manipulator before
activating those mechanisms.
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Confounding

• Confounding is now easy to understand in terms of Rubin’s
causal model; it is likely appear when the assumption
(Yi(0),Yi(1)) ⊥⊥ Zi does not hold.

• This is the case for instance if the value of Zi has not been
determined through complete randomization, but has been
recorded in a non-experimental (“observational”) study.

• It may then be that (Yi(0),Yi(1)) and Zi have common
determinants, which in turn means that Zi is informative of the
pair of potential outcomes.

• Suppose that the values of all of such common determinants,
denoted as Xi, have also been recorded in the study.
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Confounding

• The previous independence assumption may then be restated as
the conditional independence

(Yi(0),Yi(1)) ⊥⊥ Zi | Xi,

conditioning on Xi then being interpreted as controlling for
confounding.

• Many different names have been given to this assumption in
the literature; to avoid confusion, let us call it no unmeasured
confounding (NUC).

• NUC of course implies that Xi are measured confounders.
• It should be noted right away that this assumption is

empirically untestable based on observed data (Xi,Zi,Yi),
i = 1, . . . , n, alone, and must therefore be based on prior
information on the causal mechanisms involved.
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Confounding

• If adjustment is not made, the estimator based on simple
averages in the exposed and unexposed is biased in estimation
of the average causal effect, and the resulting estimate is (likely
to be) confounded, since the estimated effect has some other
than causal (w.r.t. Zi) explanation.

• It should be noted that even randomized controlled studies
have imbalance w.r.t. the confounder distributions between the
treated and untreated groups due to the random assignment,
the more the smaller is n.

• It depends on definition if the effects of this imbalance are also
called confounding.

I Miettinen (2011, p. 110) would view this as confounding,
whereas statisticians working from the basis of a causal diagram
would not.
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Exchangeability

Note
No unmeasured confounding is closely related to the concept of
exchangeability, due to de Finetti (1974).

• Exchangeability requires that the joint distribution
p(Y1, . . . ,Yn) is constant for all permutations ρ of the indices
{1, . . . , n}.

• I.e., p(Y1, . . . ,Yn) = p(Yρ(1), . . . ,Yρ(n)).
• Loosely, this means that individual units are in some sense

’similar’, so that we can learn something on further similar
instances without having to carry out further measurements,
and the individual indices are non-informative, that is, one does
not have any other relevant information to tell apart the
different individuals.
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Exchangeability

• Suppose, however, that varying dose of the drug, represented
by zi, has been administered to different individuals.

• Then the marginal exchangeability of the responses would no
longer hold, but exchangeability of the units would be restored
by including the dose (covariate) information in the
exchangeability statement as
p(Y1,Z1, . . . ,Yn,Zn) = p(Yρ(1),Zρ(1), . . . ,Yρ(n),Zρ(n)).

• This observation is the basis for Bayesian causal reasoning and
causality without counterfactuals, employed primarily by Phil
David and Vanessa Didelez.
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Foundations for causal inference: Summary

• There are many philosophical views on what defines causality,
and what can be viewed as a ‘cause’.

• Statisticians tend to formalize causality as the estimation of
parameters corresponding to population-level contrasts that are
not subject to confounding.

• Rubin’s counterfactual framework provides a causal model that
helps to formalize the definition of confounding, and clarify
the estimands of interest.

• Causal estimation can be accomplished by design in a
randomized trial setting.

• Causal estimation in the presence of confounding (typically
arising from the absence of randomization) requires modelling
[next section].
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Key points: Summary

• Counterfactuals are “what if” quantities that can help to
formalize the definition of a causal estimand.

• Only one counterfactual (of two in the case of a binary
exposure, or perhaps infinitely many for continuous exposures)
for each individual is ever observable.

• Estimation of causal quantities does not require observation of
all counterfactuals, and is based only on observed data.
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