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Session goals

• When and why is a marginal effect desirable?
• How can the parameters of a marginal effect be estimated?

I Can we use traditional approaches?
I What are the ’newer’ approaches?

• What assumptions do we need, and how can we check them?
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Road map

1. Marginal effects in a point-source treatment setting
I Definition
I Regression and stratification

2. The propensity score: a method to recover covariate balance
I Definition
I PS stratification
I PS matching
I PS regression
I inverse probability of treatment weighting

3. Assessing confounder balance
4. Double robustness
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Concept: Average Potential Outcomes

The causal (unconfounded) effect of exposure Z on outcome Y is a
measure of how much Y changes as Z is manipulated.

• Here Z is not treated as a random variable, but a manipulable
quantity that may influence Y .

• Other variables (confounders), X, may also influence Y .

• Y (z) denotes the outcome if the exposure Z is set equal to z :
I Y (z) is termed a counterfactual or potential outcome.

• A causal quantity of interest is then

E[Y (z)] =

∫
y fY (z),X(y, x) dydx

that is, an average potential outcome (APO).
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Aim

Estimate E[Y (z)] using a random sample of data

(xi, zi, yi), i = 1, . . . , n

for z in some set of values
• z ∈ {0, 1}
• z ∈ {0, 1, 2, . . . ,K}
• z ∈ (a, b)
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Small problem: assumptions

Often, we do not have access to experimental data. There is no
intervention on behalf of the researcher, the data are recorded
observationally.

If we could correctly specify the model fY |Z,X(y|z, x), or at least the
conditional expectation

E[Y |Z = z,X = x]

then this would not be a problem, as we could simply use the
iterated expectation result and estimate

Ê[Y (z)] =
1
n

n∑
i=1

E[Y |Z = z,X = xi].
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Assumptions?

What assumptions do we need to get the ‘right’ answer, i.e. an
unbiased estimator of the marginal mean E[Y (z)], via regression
when data are obtained observationally?

• Correct model specification (of mean of Y given Z and X )
• No unmeasured confounding → exchangeability
• Independence → no interference
• No extrapolation → positivity
• Well-defined exposure → cannot have multiple versions of

treatment

What if we cannot satisfy the first assumption?
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Unconfounded effect estimation by design

• We can sometimes estimate the APO (or a contrast of APOs,
such as the average treatment effect: ATE) by designing a
randomized control trial.

• Recall the setting in the case of a binary exposure:
I obtain a random sample of size n of individuals from the target

population, and measure their X values;
I according to some random assignment procedure, intervene to

assign treatment Z to individuals, and measure their outcome Y ;
I the link between X and Z is broken by the random allocation.
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Unconfounded effect estimation by design

• Recall that this procedure led to the valid use of the estimators
of the ATE based on (1) and (2) from the previous section.

• The important feature of the randomized study is that we have,
for confounders X (indeed all predictors)

fX|Z(x|1) ≡ fX|Z(x|0) for all x,

or equivalently, in the case of a binary confounder,

Pr[X = 1|Z = 1] = Pr[X = 1|Z = 0].

• The distribution of X is balanced across the two exposure
groups; this renders direct comparison of the outcomes
possible. Probabilistically, X and Z are independent.

9



Constructing a balanced sample

• In a non-randomized study, there is a possibility that the two
exposure groups are not balanced

fX|Z(x|1) 6= fX|Z(x|0) for some x,

or in the binary case

Pr[X = 1|Z = 1] 6= Pr[X = 1|Z = 0].

• If X influences Y also, then this imbalance renders direct
comparison of outcomes in the two groups impossible.
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Constructing a balanced sample

• While global balance may not be present, it may be that local
balance, i.e. within certain strata of the sample, may be present.

• That is, for x ∈ S say, we might have balance; within S, X is
independent of Z.

fX|Z:S(x|1 : x ∈ S) = fX|Z(x|0 : x ∈ S)

• Then, for individuals who have X values in S, there is the
possibility of direct comparison of the treated and untreated
groups.

• We might then restrict attention to causal statements relating
to stratum S.
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Constructing a balanced sample

• For discrete confounders, we might consider defining strata
where the X values are precisely matched, and then comparing
treated and untreated within those strata.

• Consider matching strata S1, . . . ,SK . We would then be able
to compute the ATE by noting that

E[Y (1)− Y (0)] =

K∑
k=1

E[Y (1)− Y (0)|X ∈ Sk] Pr[X ∈ Sk]

I E[Y (1)− Y (0)|X ∈ Sk] may be estimated nonparametrically
from the data by using (1) or (2) for data restricted to have
x ∈ Sk.

I Pr[X ∈ Sk] may be estimated using the empirical proportion of
x that lie in Sk.
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Constructing a balanced sample

• For continuous confounders, we might consider the same
strategy: consider matching strata S1, . . . ,SK . Then the
formula

E[Y (1)− Y (0)] =

K∑
k=1

E[Y (1)− Y (0)|X ∈ Sk] Pr[X ∈ Sk]

still holds.
• However we must assume a model for how
E[Y (1)− Y (0)|X ∈ Sk] varies with x for x ∈ Sk.

• In both cases, inference is restricted to the set of X space
contained in

K⋃
k=1

Sk.
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Constructing a balanced sample

• In the continuous case, the above calculations depend on the
assumption that the treatment effect is similar for x values that
lie ‘close together’ in predictor (confounder) space. However

I. Unless we can achieve exact matching, then the term ‘close
together’ needs careful consideration.

II. If X is moderate or high-dimensional, there may be insufficient
data to achieve adequate matching to facilitate the estimation of
the terms

E[Y (1)− Y (0)|X ∈ Sk];

recall that we need a large enough sample of treated and
untreated subjects in stratum Sk.

• Nevertheless, matching in this fashion is an important tool in
causal comparison.
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Balance via the propensity score

• We now come to the important concept of the propensity score
that facilitates causal comparison via a balancing approach.

• Recall: our goal is to mimic the construction of the
randomized study that facilitates direct comparison between
treated and untreated groups.

• We may not be able to achieve this globally, but possibly can
achieve it locally in strata of X space.

• The question is how to define these strata.
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Balance via the propensity score

• Recall that in the binary exposure case, balance corresponds to
being able to state that within S, X is independent of Z.

• This can be achieved if S is defined in terms of a statistic, e(X)
say. That is, we consider the conditional distribution

fX|Z,e(X)(x|z, e)

and attempt to ensure that, given e(X) = e, Z is independent of
X, so that within strata of e(X), the treated and untreated
groups are directly comparable.
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Balance via the propensity score

• By Bayes theorem, for z = 0, 1, we have that

fX|Z,e(X)(x|z, e) =
fZ|X,e(X)(z|x, e)fX|e(X)(x|e)

fZ|e(X)(z|e)
(1)

• Now, as Z is binary, we must be able to write the density in the
denominator as

fZ|e(X)(z|e) = p(e)z(1− p(e))1−z z ∈ 0, 1

where p(e) is a probability, a function of the fixed value e, and
where 0 < p(e) < 1.
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Balance via the propensity score

• Therefore, in order to make the density fX|Z,e(X)(x|z, e)
functionally independent of z, and so achieve the independence
we seek, we need

fZ|X,e(X)(z|x, e) = p(e)z(1− p(e))1−z z ∈ 0, 1.

• But e(X) is a function of X, so automatically we have that

fZ|X,e(X)(z|x, e) ≡ fZ|X(z|x).

Therefore, we require that

fZ|X(z|x) = fZ|X(z|x, e) = p(e)z(1− p(e))1−z ≡ fZ|e(X)(z|e)

for all relevant z, x.
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Balance via the propensity score

• This can be achieved by choosing the statistic

e(x) = PrZ|X [Z = 1|x]

and setting p(.) to be the identity function, so that

fZ|X(z|x) = ez(1− e)1−z z = 0, 1.

• More generally, choosing e(x) to be some monotone transform
of PrZ|X [Z = 1|x] would also achieve the same balance.

• The corresponding random variable e(X) defines the strata via
which the causal calculation can be considered.
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Balance via the propensity score

• The function e(x) defined in this way is the propensity score[1] .
It has the following important properties
(i) as seen above, it is a balancing score; conditional on e(X), X and

Z are independent.
(ii) it is a scalar quantity, irrespective of the dimension of X.
( iii) in noting that for balance we require that

fZ|X(z|x) ≡ fZ|e(X)(z|e),

the above construction demonstrates that if ẽ(X) is another
balancing score, then e(X) is a function of ẽ(X). That is, e(X) is
the ‘coarsest’ balancing score.

[1]see Rosenbaum & Rubin (1983), Biometrika
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Evaluating the propensity score

• To achieve balance we must have

e(X) = Pr[Z = 1|X]

correctly specified; that is, for confounders X, we must precisely
specify the model Pr[Z = 1|X].

I If X comprises entirely discrete components, then we may be
able to estimate Pr[Z = 1|X] entirely nonparametrically, and
satisfactorily if the sample size is large enough.

I If X has continuous components, it is common to use
parametric modelling, with

e(X;α) = Pr[Z = 1|X;α].

Balance then depends on correct specification of this model.
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Unconfoundedness given the propensity score

• The assumption of ‘no unmeasured confounders’ amounts to
assuming that the potential outcomes are jointly independent of
exposure assignment given the confounders, that is

{Y (0),Y (1)} ⊥⊥ Z | X.

• With a correctly specified propensity score, we now have that

Y (z) ⊥⊥ Z | e(X) for all z.
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Estimation using the propensity score

• We now consider the same stratified estimation strategy as
before, but using e(X) instead X to stratify.

• Consider strata S1, . . . ,SK defined via e(X). In this case, recall
that

0 < e(X) < 1

so we might consider an equal quantile partition, say using
quintiles.

• Then we have

E[Y (1)−Y (0)] =

K∑
k=1

E[Y (1)−Y (0)|e(X) ∈ Sk] Pr[e(X) ∈ Sk]

still holds approximately if the Sk are small enough.
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Estimation using the propensity score

• This still requires us to be able to estimate

E[Y (1)− Y (0)|e(X) ∈ Sk]

which requires us to have a sufficient number of treated and
untreated individuals with e(X) ∈ Sk to facilitate the ‘direct
comparison’ within this stratum.

• If the expected responses are constant across the stratum, the
formulae (1) and (2) may be used.
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Matching

The derivation of the propensity score indicates that it may be used
to construct matched individuals or groups that can be compared
directly.

• if two individuals have precisely the same value of e(x), then
they are exactly matched;

• if one of the pair is treated and the other untreated, then their
outcomes can be compared directly, as any imbalance between
their measured confounder values has been removed by the fact
that they are matched on e(x);

• this is conceptually identical to the standard procedure of
matching in two-group comparison.
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Matching

For an exactly matched pair (i1, i0), treated and untreated
respectively, the quantity

Yi1 − Yi0

is an unbiased estimate of the ATE

E[Y (1)− Y (0)];

more typically we might choose m such matched pairs, usually with
different e(x) values across pairs, and use the estimate

1
m

m∑
i=1

(Yi1 − Yi0)
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Matching

Exact matching is difficult to achieve, therefore we more commonly
attempt to achieve approximate matching:

• may match one treated to M untreated (1 : M matching)
• caliper matching;
• nearest neighbour/kernel matching;
• matching with replacement.

Most standard software packages have functions that provide
automatic matching using a variety of methods.

27



Propensity Score Regression

Up to this point we have considered using the propensity score for
stratification, that is, to produce directly comparable groups of
treated and untreated individuals.

Causal comparison can also be carried out using regression
techniques: that is, we consider building an estimator of the APO
by regressing the outcome on a function of the exposure and the
propensity score.

Regressing on the propensity score is a means of controlling the
confounding.
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Propensity Score Regression

If we construct a model

E[Y |Z = z, e(Z,X) = e] = µ(z, e)

then because potential outcomes Y (z) and Z are independent given
e(Z,X), we have

E[Y (z)|e(Z,X) = e] = E[Y |Z = z, e(z,X) = e] = µ(z, e)

and therefore

E[Y (z)] = Ee(z,X)[E[Y |Z = z, e(z,X)]] = Ee(z,X)[µ(z, e(z,X))].
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Propensity Score Regression

That is, to estimate the APO, we might
• fit the propensity score model e(Z,X) to the observed

exposure and confounder data by regressing Z on X;
• fit the conditional outcome model µ(z, e) using the fitted
e(Z,X) values, ê(zi, xi);

• for each z of interest, estimate the APO by

1
n

n∑
i=1

µ̂(z, ê(z, xi)).
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Propensity Score Regression

If the propensity function e(Z,X) ≡ e(X), we proceed similarly,
and construct a model

E[Y |Z = z, e(X) = e] = µ(z, e)

then

E[Y (z)|e(X) = e] = E[Y |Z = z, e(X) = e] = µ(z, e)

and therefore

E[Y (z)] = Ee(X)[E[Y |Z = z, e(X)]] = Ee(X)[µ(z, e(X))].
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Propensity Score Regression

To estimate the APO:
• fit the propensity score model e(X) to the observed exposure

and confounder data by regressing Z on X;
• fit the conditional outcome model µ(z, e) using the fitted e(X)

values, ê(xi);
• for each z of interest, estimate the APO by

1
n

n∑
i=1

µ̂(z, ê(xi)).
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Example: Binary Exposure

We specify
• e(X;α) = Pr[Z = 1|X, α] then regress Z on X to obtain α̂ and

fitted values ê(X) ≡ e(X; α̂).
• E[Y |Z = z, e(X) = e;β] = µ(z, e;β) and estimate this model

by regressing yi on zi and ê(xi). For example, we might have
that

E[Y |Z = zi, e(Xi) = ei;β] = β0 + β1zi + β2ei.

This returns β̂.
We finally compute the predictions under this model, and average
them to obtain the APO estimate

Ê[Y (z)] =
1
n

n∑
i=1

µ(z, ê(xi); β̂).
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Example: Continuous Exposure

In the case of a continuous exposure, we have a parametric
probability density for the exposure

e(Z,X;α) = fZ|X(Z|X;α)

for which we estimate α by regressing Z on X to obtain α̂ and fitted
values ê(Z,X) ≡ e(Z,X; α̂).

Then we specify outcome model

E[Y |Z = z, e(X) = e;β] = µ(z, e;β)

and estimate this model by regressing yi on zi and ê(zi, xi). Again,
we might have that

E[Y |Z = zi, e(Zi,Xi) = ei;β] = β0 + β1zi + β2ei.

This returns β̂.
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Example: Binary Exposure

We then compute the predictions under this model, and average
them to obtain the APO estimate

Ê[Y (z)] =
1
n

n∑
i=1

µ(z, ê(z, xi); β̂).

Note that here the propensity terms that enter into µ are computed
at the target z values, and

not the observed exposure values.
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Propensity Score Regression

These procedures require us to make two modelling choices:
• the propensity model, e(Z,X) or e(X);
• the outcome mean model µ(z, b).

Unfortunately, both models must be correctly specified for consistent
inference.

Misspecification of the outcome mean model will lead to bias; this
model needs to capture the outcome to exposure and propensity
function relationship correctly.
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Average potential outcome

If we could intervene at the population level to set Z = z for all
individuals independently of their X value, we might rewrite
E[Y (z)] as

E[Y (z)] =

∫
y1z(z) fY (z),X(y, x) dy dz dx

and take a random sample from the population with density

1z(z) fY (z),X(y, x) ≡ 1z(z) fY |Z,X(y|z, x)fX(x).

We could then construct the moment estimate

Ê[Y (z)] =
1
n

n∑
i=1

yi

as zi = z for all i.

37



Average potential outcome: Experimental data

In a randomized (experimental) study, suppose that exposure Z = z
is assigned with probability determined by fZ(z). Then

E[Y (z)] =

∫
y 1z(z) fY |Z,X(y|z, x)fX(x)fZ(z) dy dz dx∫

1z(z)fZ(z) dz

This suggests the Monte Carlo estimates

Ê[Y (z)] =

n∑
i=1

1z(zi)yi
n∑

i=1
1z(zi)

or Ê[Y (z)] =
1

nfZ(z)

n∑
i=1

1z(zi)yi

38



Average potential outcome

Commonly, we want to carry out a comparison of average potential
outcomes at different values of z, e.g.:

Ê[Y (1)− Y (0)] =

n∑
i=1

1z=1(zi)yi
n∑

i=1
1z=1(zi)

−

n∑
i=1

1z=0(z1)yi
n∑

i=1
1z=0(zi)

or

Ê[Y (1)− Y (0)] =
1

nfZ(z = 1)

n∑
i=1

1z=1(zi)yi

− 1
nfZ(z = 0)

n∑
i=1

1z=0(zi)yi.
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Average potential outcome: Observational data
Denote by PE the probability measure for samples drawn under the
experimental measure corresponding to the density

f EY |Z,X(y|z, x)f EX (x)f EZ (z)

Now consider the case where the data arise from the observational
(non-experimental) measure PO(dy, dz, dx). We have

E[Y (z)] =
1

f EZ (z)

∫
y1z(z) PE(dy, dz, dx)

=
1

f EZ (z)

∫
y1z(z)

PE(dy, dz, dx)
PO(dy, dz, dx)︸ ︷︷ ︸

1

PO(dy, dz, dx)

In terms of densities 1 becomes

f EY |Z,X(y|z, x)f EZ (z)f EX (x)

f OY |Z,X(y|z, x)f OZ|X(z|x)f OX (x)
=

f EY |Z,X(y|z, x)
f OY |Z,X(y|z, x)

×
f EZ (z)

f OZ|X(z|x)
×

f EX (x)
f OX (x)
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Estimation
This suggests the (nonparametric) estimators

Ê[Y (z)] =
1
n

n∑
i=1

1z(Zi)Yi

f OZ|X(Zi|Xi)
(IPW0)

which is unbiased, or

Ê[Y (z)] =

n∑
i=1

1z(Zi)Yi

f OZ|X(Zi|Xi)

n∑
i=1

1z(Zi)

f OZ|X(Zi|Xi)

(IPW)

which is consistent, each provided f OZ|X(.|.) correctly specifies the
conditional density of Z given X for all (z, x).

The inverse probability weighting constructs a pseudo-population
in which there are no imbalances on measured covariates between
the exposure groups.
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Assumptions

What assumptions do we need to get the ‘right’ answer, i.e. an
unbiased estimator of the marginal mean E[Y (z)], via IPW?

• Correct model specification (of mean of Z given X )
• No unmeasured confounding
• Independence
• No extrapolation
• Well-defined exposure
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Parametric modelling: two-stage approach

In the formulation, the nonparametric models

f OZ|X(z|x) µ(z, x)

are commonly replaced by parametric models

f OZ|X(z|x;α) µ(z, x;β) =

∫
y f OY |Z,X(y|z, x;β) dy.

Parameters (α, β) are estimated from the observed data by
regressing

• Stage I: Z on X using (zi, xi), i = 1, . . . , n.
• Stage II: Y on (Z,X) using (yi, zi, xi), i = 1, . . . , n.

and using plug-in version of (IPW).
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Confounder balance

• In PS-based methods, the goal of the treatment model is to
eliminate imbalance in the distribution of covariates between
treatment and untreated subjects.

• Some measures of balance:
I Standardized mean difference or proportion:

x̄1,sw − x̄0,sw√
0.5(v1,sw + v0,sw)

where x̄z,w = 1
n
∑n

i=1
1z (Zi)Xi
fOZ|X(Zi|Xi)

, i.e. the weighted sample mean

of variable X among those with treatment value z (for binary
treatment), and similarly vz,w is the weighted variance estimate.

I Visual examination of weighted empirical CDFs among the
treated and untreated (for binary or categorical treatment).
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Confounder balance

• Some methods to avoid:
I C-statistic.
I Significance tests.

• This ties in with the key point that the goal is to eliminate
imbalance and thereby remove the effects of confounding.

• The goal is not to build an excellent predictive model for the
treatment.

45



Assessing balance: example

• In this example, we will explore propensity score based
analyses using the publicly available (U.S.) National Health
and Nutrition Examination Survey (NHANES). For this, I
installed NHANES, tableone, and Matching in R.

• We will focus our analysis on the question of whether
currently smoking affects average systolic blood pressure. The
variables we will need are: BPSysAve, SmokeNow, Gender, Age,
Race3, Education, MaritalStatus, and Poverty where the
first two are the outcome and exposure of interest and the
remaining are potential confounders.

• Additionally, we will restrict our attention to adults (> 17
years old) in the second wave of the survey.
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Assessing balance: example

> library(NHANES)

> library(tableone)

> library(Matching)

>

> NHANES$SmokeNow <- as.numeric(NHANES$SmokeNow)-1

> small.nhanes <- na.omit(NHANES[NHANES$SurveyYr=="2011_12"

& NHANES$Age > 17,c(3,4,8:11,13,25,61)])

> dim(small.nhanes) ## 1377

>

> vars <- c("Gender", "Age", "Race3", "Education",

"MaritalStatus", "Poverty")

> tabUnmatched <- CreateTableOne(vars = vars,

strata = "SmokeNow", data = small.nhanes,

test = FALSE)
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Assessing balance: example

> print(tabUnmatched, smd = TRUE)

Stratified by SmokeNow

0 1 SMD

n 782 595

Gender = male (%) 432 (55.2) 369 (62.0) 0.138

Age (mean (sd)) 54.33 (16.52) 44.96 (15.11) 0.592

Race3 (%) 0.315

Asian 25 ( 3.2) 15 ( 2.5)

Black 43 ( 5.5) 64 (10.8)

Hispanic 26 ( 3.3) 38 ( 6.4)

Mexican 45 ( 5.8) 35 ( 5.9)

White 630 (80.6) 416 (69.9)

Other 13 ( 1.7) 27 ( 4.5)
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Assessing balance: example

Education (%) 0.512

8th Grade 59 ( 7.5) 33 ( 5.5)

9 - 11th Grade 71 ( 9.1) 120 (20.2)

High School 152 (19.4) 151 (25.4)

Some College 256 (32.7) 210 (35.3)

College Grad 244 (31.2) 81 (13.6)

MaritalStatus (%) 0.488

Divorced 85 (10.9) 77 (12.9)

LivePartner 61 ( 7.8) 96 (16.1)

Married 453 (57.9) 240 (40.3)

NeverMarried 108 (13.8) 142 (23.9)

Separated 6 ( 0.8) 14 ( 2.4)

Widowed 69 ( 8.8) 26 ( 4.4)

Poverty (mean (sd)) 3.11 (1.65) 2.38 (1.58) 0.453
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Assessing balance: example
Assessing balance – original sample eCDFs in smokers and
non-smokers for age:
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Assessing balance: example

Table. Standardized mean differences: NHANES.
Var. PS Quintiles

Orig. Q1 Q2 Q3 Q4 Q5 Match IPW
Gender 0.138 0.102 0.104 0.029 0.200 0.031 0.006 0.023
Age 0.592 0.257 0.171 0.099 0.311 0.164 0.002 0.014
Race 0.315 0.317 0.112 0.344 0.415 0.287 0.120 0.052
Educ. 0.512 0.538 0.417 0.280 0.238 0.302 0.133 0.029
Marital 0.488 0.432 0.239 0.272 0.233 0.261 0.094 0.023
Poverty 0.453 0.087 0.126 0.114 0.004 0.146 0.049 0.000
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Assessing balance: example
Assessing balance – eCDFs within quintiles of PS in smokers and
non-smokers for age:
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Assessing balance: example

Assessing balance – eCDFs in smokers and non-smokers for age,
matched and IPW:
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Double robustness

• The IPW is popular, perhaps unduly so given that it is provably
less efficient than PS regression.

• Can we improve upon it?
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Double robustness

The IPW can be augmented. Note that

E[Y (z)] = E[Y (z)− µ(z,X)] + E[µ(z,X)]

where µ(z, x) = E[Y |Z = z,X = x].

This gives the alternate estimator

Ê[Y (z)] =
1
n

n∑
i=1

1z(Zi)(Yi − µ(Zi,Xi))

f OZ|X(Zi|Xi)
+

1
n

n∑
i=1

µ(z,Xi).

(AIPW)
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Doubly robust IPW

Equation (AIPW) is doubly robust (i.e. consistent even if one of
f OZ|X(z|x) and µ(z, x) is misspecified).

• If µ(z,Xi) is correctly specified, then Yi − µ(Zi,Xi)→ 0, and
the first term in the augmented estimator disappears
(asymptotically), leaving the term 1

n
∑n

i=1 µ(z,Xi) which is
consistent for E[Y (z)].

• If f OZ|X(Zi|Xi) is correctly specified, then 1z (Zi)

fOZ|X(Zi|Xi)
→ 1, and so

1
n

n∑
i=1

1z(Zi)(−µ(Zi,Xi))

f OZ|X(Zi|Xi)
+

1
n

n∑
i=1

µ(z,Xi)→ 0,

leaving 1
n
∑n

i=1
1z (Zi)Yi
fOZ|X(Zi|Xi)

.

Further, VarAIPW ≤ VarIPW.
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Time-fixed treatments & causal inference: Summary

• Causal estimation of time-fixed treatment effects can be
achieved through traditional approaches such as regression or
stratification.

• The propensity score is simply a model for the exposure given
confounding variables; note that ‘instruments’ (variables that
only predict treatment) should be omitted.

• The PS can be used in many ways: stratification, matching,
regression, IPW. Regression is most efficient, but it is prudent
to be flexible.

• Balance can be assessed visually and through tables.
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Key points: Summary

• A marginal summary attempts to answer questions relevant to
policy makers: what is the expected outcome, averaged over the
covariate distribution in my population?

• Such questions help to avoid the ‘trap’ of contrasting those
who are observed to be treated and untreated, as these may be
very different (w.r.t confounding variables) groups of
individuals.

• To recover a marginal summary, we need to restore, or create,
balance on covariates between the treatment groups.

• We can only restore balance on covariates that we have
measured. It is crucial to understand the context of the
question to begin to assess whether all confounders have been
measured.
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