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Session goals

• What parameters does an MSM actually estimate?
• When and why is an MSM needed?
• How can the parameters of an MSM be estimated?
• Assumptions, cautions, caveats.
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Road map

1. Marginal effects in a longitudinal treatment setting
I Definition
I Failure of standard approaches

2. Three approaches to estimations
I Inverse weighting
I Forwards regression (g-computation)
I Recursive regression (g-estimation)

3. Assumptions for each of the approaches
4. Simple worked example
5. Further considerations if time permits
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The Marginal Structural Model

In longitudinal studies we observe for each individual i a sequence
of exposures

Zi1,Zi2, . . . ,ZiJ

and confounders
Xi1,Xi2, . . . ,XiJ

along with outcome Yi ≡ YiJ measured at the end of the study.

Intermediate outcomes Yi1,Yi2, . . . ,Yi,J−1 also possibly available.
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Some concepts, longitudinally

In a repeated measures or time-to-event setting, variables can be
both intermediate and confounding.

Suppose we are interested in the total effects of treatments Z1 and Z2
on survival to time t, which we denote Y , in the presence of a
time-dependent confounder X2:

X2 Y 

Z2 Z1 
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Some concepts, longitudinally

Z2 affects Y directly:

X2 Y 

Z2 Z1 
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Some concepts, longitudinally

...and X2 confounds the relationship between Z2 and Y :

X2 Y 

Z2 Z1 
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Some concepts, longitudinally

But Z1 affects Y indirectly through X2:

X2 Y 

Z2 Z1 
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Some concepts, longitudinally

• Thus, if interested in the total effects of a sequence of treatment
doses on an end-of-study response, standard regression models
cannot be used.

• ...but what if there are no intermediate variables? Could we
then condition on the time-depending confounders and use
standard methods?

I The answer in general is no.
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Some concepts, longitudinally

The potential for bias if there exists an unmeasured, underlying
frailty:

X2 Y

Z2Z1

U

X1
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Some concepts, longitudinally

Note that there are a variety of configurations that can lead to bias
(including of the ‘collider-stratification’ variety):

X2 Y

Z2Z1

U

X1
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Marginal structural models

• Marginal Structural Models provide a powerful tool to assess
the effects of exposures in longitudinal settings (can also be
used for cross-sectional data).

I Models are marginal because they pertain to population-average
effects, structural because they describe causal (not
associational) effects.

I Most popular choice of model for data that exhibit time-varying
confounding where the confounders are also mediators.
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Potential outcomes: longitudinally

• Counterfactual or potential outcomes: the outcomes that
would have been observed had a person been exposed to a
particular treatment pattern.

• Consider a two-interval setting where data is collected at three
times: baseline (t0), t1, and t2, with covariates Xj measured at
tj−1 ( j = 1, 2), treatments Zj taken between tj−1 and tj
( j = 1, 2), and outcome Y measured at t2.

X2 Y 

Z2 Z1 

X1 
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Potential outcomes

• There are four possible exposure patterns:
I always exposed (z1,z2)=(1,1),
I never exposed (z1,z2)=(0,0),
I only exposed in one interval (z1,z2)=(1,0), or (0,1).

• We posit that each person has four responses (one
corresponding to each exposure pattern), denoted
Y (1, 1),Y (0, 0),Y (1, 0),Y (0, 1), respectively.
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Potential outcomes

• Suppose in reality an individual is treated in both intervals.
• We observed the outcome Y , which equals the counterfactual
Y (1, 1) but we do not observe outcomes under the three other
possible exposure patterns.

• Although we cannot observe most potential outcomes, we can
use them to help formulate causal models.
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Potential outcomes

• Rather than asking
what is the average outcome among people who did receive
treatment pattern (z1,z2)=(1,1)?

we can ask
what would be the average outcome among if everyone received
treatment pattern (z1,z2)=(1,1)?

• An MSM is a model for E[Y (z1,z2)], i.e. the average outcome
if the entire population was exposed to treatment pattern
z1,z2, for each possible treatment pair.
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Potential outcomes

• Since we can only ever observe one of the four counterfactuals,
we can recast this as a missing data problem, and up- or
down-weight individuals so as to create a population in which
treatment receipt is not affected by time-varying covariates.

• Alternatively, we can again view this inverse probability
weighting as an importance sampling approach.

• We create a pseudo-population of subjects in which the
treatments Zj and covariates Xj are unassociated, and therefore
there exists no time-varying confounding.

I Because there is no confounding, there is no need to condition
on Xj.

I By not conditioning on Xj, we do not block mediated pathways
or induce collider-stratification bias.
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Pseudo-population: What does it do?

X2 Y 

Z2 Z1 

U 
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Assumptions

What assumptions do we need to obtain an unbiased estimator of
the marginal mean E[Y (z1,z2, . . . ,zJ)], via IPW, for some
sequence of treatments z1,z2, . . . ,zJ?

• Correct model specification (of mean of Zj given the past ∀j)
• No unmeasured confounding at each interval→ sequential

randomization
• Independence
• No extrapolation
• Well-defined exposure
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Choice of weights

• Several options for the treatment weights. The simplest are
unstandardized weights:

w = {Pr(Z1 = z1|X1)× Pr(Z2 = z2|X1,Z1,X2)}−1

=
1

Pr(Z1,Z2|X1,X2)
,

i.e., each individual’s weight is computed by taking the product
of the estimated probability of receiving the treatment he
actually received in each interval, conditional on past
time-varying covariates (including, potentially, baseline
covariates and previous treatment).
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Choice of weights

• It is more common to use standardized weights:

sw =
Pr(Z1 = z1)× Pr(Z2 = z2|Z1)

Pr(Z1 = z1|X1)× Pr(Z2 = z2|X1,Z1,X2)
.

• These weights may still be quite variable, particularly if there
are some individuals who received unusual treatments given
their covariates→ can normalize and/or truncate to further
reduce variability.
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MSM estimation

The MSM estimation procedure via IPW is straightforward:

1. Fit treatment models: fit a logistic regression model for the
probability of being treated at each interval.

2. Determine the weights:

(a) Use the models in step (1) to predict the probability that a
person received the exposure pattern he did in fact receive, by
taking the product of the probability of receiving the observed
treatment in each interval.

(b) Set each individual’s weight to one over the probability
computed in (2a). Optionally (recommended): stabilize,
normalize, and/or truncate the weights.

3. Fit a response model: weighting each individual by the weights
computed in (2b), use standard software to fit a regression model for
the response given exposure and possibly baseline covariates.
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MSM estimation

• All confounding covariates should be included in the treatment
models; variables that predict only treatment (but not the
outcome) can be omitted.

• Automated model selection (e.g., stepwise procedures) should
not be used.

• The procedure outlined on the previous slide is valid for any
type of outcome, including binary responses or time-to-event
(survival) data.

• For time-to-event data, a weighted Cox model can be fit, or
time can be discretized (e.g. into months) and a weighted
logistic regression on status can be fit.
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MSM: sample code for a two-interval example

## First interval weight:

ps1 <- glm(Z1~X1,family=binomial)

w1 <- 1/ifelse(Z1==1,predict(ps1,type="response"),

1-predict(ps1,type="response"))

## Second interval weight:

ps2 <- glm(Z2~X2+X1+Z1,family=binomial)

w2 <- 1/ifelse(Z2==1,predict(ps2,type="response"),

1-predict(ps2,type="response"))

## Final weights, and MSM:

wt <- w1*w2 ## (unstabilized)

msm <- lm(Y~Z1+Z2,weights=wt)

# msm <- lm(Y~Z1*Z2,weights=wt)

summary(msm)
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MSM: (simulated) HIV example

• Suppose that researchers are interested in the effect of HAART
interruptions on liver function in an HIV+ population.

• We simulate an example with n = 100 designed to follow the
causal structure below:

X2 Y 

Z2 Z1 

X1 
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MSM: HIV example

• Liver function is measured at baseline (X1), six months (X2),
and 12 months (Y ).

• Exposure Z1 is a binary indicator of HAART interruption
between baseline and month 6, and Z2 the corresponding
indicator for occlusion between months 6 and 12.

• Model 1 adjusts for baseline liver function (X1) only; Model 2
adjusts for both baseline and six-month liver function (X1 and
X2).

Table. Results from traditional regression models. True parameter values
are -0.038, and -0.086.

Model 1 Model 2
Variable β̂ SE % bias β̂ SE % bias
Z1 -0.036 0.0121 6.4 0.213 0.009 660.8
Z2 -0.074 0.0121 14.2 -0.085 0.004 0.9
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MSM: HIV example

• Results of the previous slide are based on a single data set of a
modest size (n=100).

• Repeating the simulation study 10,000 times:
I the bias of the estimator of β for Z2 in Model 1 is 6.0%
I the bias of the estimator of β for Z1 in Model 2 is 679%

• Repeating the simulation study 10,000 times for n = 5000:
I the bias of the estimator of β for Z2 in Model 1 is 6.3%
I the bias of the estimator of β for Z1 in Model 2 is 679%

indicating that the bias does not diminish with increasing
sample size.

• Using an MSM yields estimates (SE) of -0.039 (0.013) and
-0.086 (0.013) for Z1 and Z2, respectively. Repeating the
simulation 10,000 with n = 100: bias of less than 0.65% for
each parameter.
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Example 2: marginal structural models “by hand”

Consider a simple example, where treatment at each interval is
beneficial, and receipt of treatment in the second interval is strongly
dependent on the intermediate outcome X2 (with X2, Y indicative
of a negative outcome):

X2 Y

Z2Z1
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Example 2: the data

0                                          1 
500                                              500 

 
0                1                       0                1 

                     311               189                          365                135 

 
0          1           0          1           0         1         0         1  

      194         117          71          118          227        138         51         84 

 
0   1    0   1    0   1    0   1       0   1    0   1    0   1    0    1 

  142  52   96  21    27  44    59 59      166  61  113 25   19  32    42  42    

Z1 
(n) 

X2 
(n) 

Z2 
(n) 

Y 
(n) 

Following Diggle, Heagerty, Liang & Zeger, §12.5. 28



Example 2: observed associations

Ê[Y |z1 = 1, z2 = 1] = (25 + 42)/(138 + 84) = 0.30
Ê[Y |z1 = 1, z2 = 0] = (61 + 32)/(227 + 51) = 0.33
Ê[Y |z1 = 0, z2 = 1] = (21 + 59)/(117 + 118) = 0.34
Ê[Y |z1 = 0, z2 = 0] = (52 + 44)/(194 + 71) = 0.36

The benefit of treatment is not evident here, with 30% experiencing
the outcome when receiving treatment in both intervals, compared
to 36% when treatment-free, giving an OR of 0.76
(=(0.3/0.7)/(0.36/0.64)).
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Example 2: observed associations

Alternatively, we obtain the following regression coefficient
estimates:

logit(E[Y |z1 = 1, z2 = 1]) = −0.56− 0.13z1
−0.10z2 − 0.04z1z2.

Again, this leads to an OR of 0.76 (= exp(−0.13− 0.10− 0.04)) for
the always- vs never-treated comparison.
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Example 2: an (impossible) controller
What if we could control treatment assignment, so that our design
is experimental rather than observational? Then:

0                                          1 
                                  0                                                  1000 

 
0                1                       0                1 

                       0                     0                          731                 269 

 
0          1           0          1           0         1         0         1  

        0              0              0              0             0          731          0          269 

 
0   1    0   1    0   1    0   1       0   1    0   1    0   1    0    1 

     0     0     0     0     0     0     0    0          0    0   598 133   0    0   134   134 

Z1 
(n) 

X2 
(n) 

Z2 
(n) 

Y 
(n) 

so that Ê[Y (1, 1)] = (133 + 134)/1000 = 0.27.
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Example 2: an (impossible) controller
Similarly, if we could prevent the entire population from receiving
treatment, we would expect to see:

0                                          1 
                               1000                                                  0 

 
0                1                       0                1 

                     622                378                           0                     0 

 
0          1           0          1           0         1         0         1  

      622           0             378          0              0            0            0             0 

 
0   1    0   1    0   1    0   1       0   1    0   1    0   1    0    1 

  455 167   0    0    143 235   0    0         0     0     0     0     0     0     0      0 

Z1 
(n) 

X2 
(n) 

Z2 
(n) 

Y 
(n) 

and so Ê[Y (0, 0)] = (167 + 235)/1000 = 0.40; the benefits of
treatment are now much more apparent, with an OR of 0.55.
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Example 2: results found by the (impossible) controller

Ê[Y (z1 = 1,z2 = 1)] = (134 + 133)/(731 + 269) = 0.267
Ê[Y (z1 = 0,z2 = 0)] = (167 + 235)/(622 + 378) = 0.402

The benefit of treatment is now more evident here, with 27%
experiencing the outcome when receiving treatment in both
intervals, compared to 40% when treatment-free, giving an OR of
0.54.
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Example 2: IPW
Since we cannot, in reality, control treatment receipt, let us instead
perform an analysis that acknowledges the simultaneous roles of X2
as confounder and mediator.
First, we have to construct weights. We will use stabilized weights,
of the form:

sw =
1

Pr(Z1 = z1)
· Pr(Z2 = z2|Z1 = z1)
Pr(Z2 = z2|X2 = x2,Z1 = z1)

.

where

P̂r(Z1 = 1) = 0.5
P̂r(Z2 = 1|Z1 = 0) = 0.47
P̂r(Z2 = 1|Z1 = 1) = 0.444

P̂r(Z2 = 1|X2 = 0,Z1 = 0) = 0.367
P̂r(Z2 = 1|X2 = 1,Z1 = 0) = 0.624

etc.
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Example 2: IPW

0                                          1 
500                                              500 

 
0                1                       0                1 

                     311               189                          365                135 

 
0          1           0          1           0         1         0         1  

      194         117          71          118          227        138         51         84 

 
0   1    0   1    0   1    0   1       0   1    0   1    0   1    0    1 

  142  52   96  21    27  44    59 59      166  61  113 25   19  32    42  42 
  0.85 0.85 1.25 1.25 1.40 1.40 0.76 0.76     0.89 0.89 1.17 1.17 1.47 1.47 0.71 0.71 
120.7  44.2   120  26.3  37.8 61.6  44.8 44.8      147.7 54.3 132.2 29.3  27.9 47.0  29.8 29.8 

Z1 
(n) 

X2 
(n) 

Z2 
(n) 

Y 
(n) 
sw 
n* 
 Note that sw, the stabilized weights, and n*, the sample size in the reweighted pseudo-population, have 
been rounded. In practice, rounding should only be done on the final estimate. 
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Example 2: IPW

Note that we are not weighting by the probability of receiving
treatment in both intervals,

1
Pr(Z1 = 1)

· Pr(Z2 = 1|Z1 = z1)
Pr(Z2 = 1|X2 = x2,Z1 = z1)

.

but rather by the probability of having received the observed
treatment combination (z1, z2)

sw =
1

Pr(Z1 = z1)
· Pr(Z2 = z2|Z1 = z1)
Pr(Z2 = z2|X2 = x2,Z1 = z1)

.

Using the reweighted sample, we now find
Ê[Y (1, 1)] = (29.3+ 29.8)/(132.2+ 29.3+ 29.8+ 29.8) = 0.27, and
Ê[Y (0, 0)] = (44.2 + 61.6)/(120.7 + 44.2 + 37.8 + 61.6) = 0.40.
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Recap

We have now seen that:
1. When there exists a time dependent confounder, Xj, that acts as

a mediator, standard regression models fail.
2. When there exists a time dependent confounder, Xj, that is not

a mediator, but there exists an unmeasured variable U that
affects both Xj and the outcome, standard regression models
fail.

3. IPW can be used to estimate total effects in a marginal
structural model.

Are there any alternatives?
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G-computation

In IPW, the focus is on modelling the treatment process so as to
obtain the inverse weights.

In g-computation, the focus is instead of modelling the intermediate
covariates, and then to simulate the data forward under treatment
regimes of interest.

The basis of g-computation is the “telescoping” sequence of
conditional distributions:

f (Y ,X|Z) =
J∏

j=1

f (Yj|Hj)× f (Xj|Hj−1,Yj−1)

where Hj = (X1,Z1,X2, ...,Xj−1,Zj−1,Yj−1,Xj,Zj).
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Example 2: G-computation

Let’s return to the simple example. We have only 1 intermediate
covariate, so g-computation requires only models for
Pr(Y = 1|Z1,X2,Z2) and Pr(X2 = 1|Z1).

Then we can compute

Ê[Y (1, 1)] =
∑
x2

Pr(Y = 1|Z1 = 1,X2 = x2,Z2 = 1) ·

Pr(X2 = x2|Z1 = 1)
= (25/138) ∗ (365/500) + (42/84) ∗ (135/500)
= 0.267
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Example 2: G-computation

For the no-treatment scenario, we find:

Ê[Y (0, 0)] =
∑
x2

Pr(Y = 1|Z1 = 0,X2 = x2,Z2 = 0) ·

Pr(X2 = x2|Z1 = 0)
= (52/194) ∗ (311/500) + (44/71) ∗ (189/500)
= 0.401
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Assumptions

What assumptions do we need to obtain an unbiased estimator of
the marginal mean E[Y (z1,z2, . . . ,zJ)], via g-computation, for
some sequence of treatments z1,z2, . . . ,zJ?

• Correct model specification (of the mean of Y given the past,
and of the distribution of Xj given the past ∀j)

• No unmeasured confounding at each interval
• Independence
• No extrapolation
• Well-defined exposure

Note that the first assumption may be difficult to satisfy for
moderate dimensionality of Xj, especially if some elements are
continuous-valued.
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G-estimation

• Yet a third approach to estimating marginal models is known
as g-estimation.

• Unbiasedness in the simplest g-estimation method comes
through modelling the expected treatment, though there is also
a doubly-robust version.

• The focus in g-estimation is on contrasts between the treated
and untreated.

• The contrasts are called blip functions, and may be simple,
e.g. γ(z; h, ψ) = ψz or more complex,
e.g. γ(z; h, ψ) = z(ψ0 + ψ1x).

Crash course in EEs

Additional considerations

Summary

42



G-estimation in one interval

In a one-interval setting, g-estimation proceeds as follows:
1. Specify a blip function, γ(z; h, ψ) that parameterizes the effect

of treatment Z on outcome Y (possibly modified by covariates
X ).

2. Specify a treatment model, E[Z|X;α] and estimate its
parameters (e.g. via logistic regression for binary Z).

3. Letting S(z) = ∂
∂ψγ(z; h, ψ), solve the g-estimating equation:

U(ψ) =

n∑
i=1

{[Yi − γ(zi; hi, ψ)] · [S(zi)− E(S(Zi)|x;α)]} = 0.

Note that this g-EE is unbiased when the treatment model,
E[Z|X;α], is correctly specified.
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Assumptions for simple g-estimation

• Correct model specification (of mean of Z given X )
• No unmeasured confounding
• Independence
• No extrapolation
• Well-defined exposure
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G-estimation in one interval: double robustness
In a one-interval setting, the g-estimation procedure can be made
‘doubly robust’ – and can yield more efficient estimators – by
additional positing a model for the treatment-free outcome.

• Let G(ψ) = Y − γ(z; h, ψ). The G(ψ) is the (possibly
counterfactual) treatment-free outcome.

• Let E[G(ψ)|h; η] parameterize a model for the expected value
of G(ψ). Note that we can re-write this to see that

E[Y |h;ψ, η] = E[G(ψ)|h; η] + γ(z; h, ψ).
• With S(z) = ∂

∂ψγ(z; h, ψ), the following is a doubly-robust
g-estimating equation:

U(ψ) =

n∑
i=1

{
[Yi − γ(zi; hi, ψ)− E(G(ψ)|h; η)] · [S(zi)− E(Zi|x;α)]

}
= 0.

This g-EE is unbiased when either E[Z|X;α] or E[G(ψ)|h; η] is
correctly specified.
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DR g-estimation in multiple intervals

In the multiple interval setting, we need to be careful in our
specification of the blip.

We want it to parameterize the following:

γj(zj; hj, ψj) = E[Y (z1, ...,zj, 0, ..., 0)− Y (z1, ..., zj−1, 0, ..., 0)],

i.e. it is a model for the (‘true’) effect of being treated in the jth
interval, given treatment history z1, ..., zj−1 and assuming no
treatment in all subsequent intervals.

This particular form of blip is called a “zero-blip-to-zero” function.
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DR g-estimation in multiple intervals

In a J -interval setting, g-estimation proceeds from the last interval to
the first, recursively estimating the blip parameters:

1. At each interval, specify a blip function, γj(zj; hj, ψj).
2. At each interval, specify a treatment model, E[Zj|Xj;αj] and

estimate its parameters.
3. At the last interval, J , set GJ(ψJ) = Y − γJ(zJ ; hJ , ψJ), and

specify E[GJ(ψJ)|hJ ; ηJ ].
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DR g-estimation in multiple intervals (cont.)

4. Solve UJ(ψJ) = 0.
5. For j = J − 1, ..., 1:

i. Set Gj(ψj) = Y −
∑

k≥j γ(zk; hk, ψk), and specify
E[Gj(ψj)|hj; ηj].

ii. Solve Uj(ψj) = 0.

where Uj(ψj) =

n∑
i=1

{
[Yi −

∑
k≥j

γ(zki; hki, ψk)− E(Gj(ψj)|hj; ηj)] ·

[Sj(zji)− E[S(Zji|xj;αj)]]
}

for j = 1, ..., J .
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DR g-estimation: further considerations

• Like IPW and g-computation, sequential randomization
(i.e. no confounders at each interval) is required.

• The treatment models can be allowed to share parameters.
• The blip models can be allowed to share parameters, but the

estimation is then more complicated: recursive estimation no
longer appropriate and it is difficult to solve the g-EE for all
intervals simultaneously.
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DR g-estimation: further considerations

• Alternative blip models can also be specified to allow
estimation of more complex treatment strategies, e.g. instead of
all-or-nothing contrasts, we can specify ‘optimal’ blip functions
that allow us to estimate optimal, personalized treatment
strategies.

• Applying g-estimation to continuous exposures is
straightforward.

• Applying g-estimation to binary or time-to-event outcomes is
often not.

• DRTreg package in R can be used for estimation.

Summary
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Additional considerations: SEs and CIs

• All of the approaches considered (IPW/AIPW, g-computation,
g-estimation) rely on substitution estimators.

I In IPW, we plug in estimated weights; AIPW uses plug in
weights and mean outcomes.

I In g-computation, we simulate the outcome using estimated
models.

I In g-estimation, we plug in estimated weights and possibly also
estimated treatment-free outcomes.

• We need to account for this when estimating standard errors
and/or confidence intervals.

• Analytically derived asymptotic variances can also be used, but
are not provided in standard software packages.

• The easiest approach is to bootstrap.
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Additional considerations: missing data

• If data are missing intermittently, one can either impute or
censor an individual at the first instance of missing data.

• Censored data (drop-out) can easily be handled by
incorporating weights for censoring into the regression model
or estimating equation for any of the three approaches that we
have considered.

52



Additional considerations: timing of the exposure

When covariates are time-dependent, there are several aspects of the
analysis that require consideration

• Cumulative vs. current exposure
I Driven by scientific/biological effect
I E.g. Current smoking status or pack-years smoked?, dose of a

medication since last visit or dose since start of study?, etc.
• Time lag

I Again, driven by scientific/biological effect
I E.g. Incubation period of pathogens, latency period for

carcinogens/cancer, etc.
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Additional considerations: timing of the exposure

• Whenever possible, use biological knowledge to inform the
model.

• A commonly used approach is to cumulate the exposure
(summing the number of exposed intervals).

• Although there are some models that try to learn about this lag
from the data (“weighted cumulative exposure” models), these
can be very unreliable.

I WCE models include an indicator for exposure (yes/no) over
many, many lagged time points and then attempts to learn from
the data how exposure affects the outcome using a smooth
function.
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WCE

Idealized weight functions
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WCE

Realized weight functions (simulated data, exponential weights)
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WCE

Realized weight functions (simulated data, normal weights)
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WCE

An actual (estimated) weight function
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Time-varying covariates & causal inference: Summary

• We have looked at three approaches to estimating marginal
structural models:

I Marginal structural models
I G-computation
I G-estimation

• The first of these provides marginal (population average)
parameters, while the other two can provide results that are
conditional on time-varying covariates.

• These approaches can be used where standard methods fail: in
particular, when time-varying covariates exist and act as
mediating variables.
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Key points: Summary

• When exposures vary over time, there is a the potential for
greater complexity in the data structure, particularly if
variables act as both mediators and confounders.

• MSMs are straight-forward to compute and allow estimation of
a range of parameters including population average effects
under specific exposure patterns, and the decomposition of
effects into the effect mediated through a variable and the
“remainder” of the effect which is not.

• G-computation and G-estimation require a bit more statistical
and computational expertise to implement, but also afford
more flexibility.
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Key points: Why use MSMs?

• Standard regression models yield biased estimates of treatment
effects when:
(i) in a time-dependent exposure setting, some mediating variables

are also confounders, or
(ii) in a time-dependent exposure setting, there exists an

unmeasured variable that causes changes in a confounder and
the outcome, or

(iii) in a mediation analysis if any of the confounders of
mediator-outcome relationship are caused by the exposure.

• MSMs can also be used in other settings to adjust for
confounding, e.g. a cross-sectional study (but typically aren’t:
why use them if a simpler approach will suffice?)

• MSMs are useful even in RCTs – not for an ITT analysis, but
for secondary analyses when there is non-compliance or
attrition.
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Key points: Why use MSMs?

• MSMs are often criticized for their reliance on strong
assumptions, however all statistical analyses rely on
assumptions, many of which are the same.

• In a standard regression setting (e.g. cross-sectional data), let’s
quickly review the “MSM assumptions”:

I No unmeasured confounding.
I Correct model specification (treatment and response).
I Exposed and unexposed individuals at every covariate

combination (positivity).
I Exposures must be well-defined.
I No interference between participants.

Each of these is required to draw sensible interpretations from
a standard regression model!
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A crash course in estimating functions
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Two main approaches to inference

Estimating Functions:
• A function of the parameter and data, U(θ,Y ), of the same

dimensionality as the parameter, for which E[U(θ,Y )] = 0 is
considered.

• The EF estimator is then found as the solution to the estimating
equation U(θ̂,Y ) = 0.

• For inference, the frequency properties of the estimating function are
derived and these are transferred to the resultant estimator.

• Often the estimating function is derived from a likelihood.

Bayesian:
• In addition to the likelihood p(y|θ), specify a prior distribution π(θ).

• Then via Bayes theorem derive the posterior distribution
p(θ|y) = p(y|θ)×π(θ)

p(y) .

• All inference follows from the posterior distribution.
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Estimating functions

• An estimating function is a function

Un(θ) =
1
n

n∑
i=1

U(θ,Yi) (1)

of the same dimension as θ for which

E[Un(θ)] = 0 (2)

for all θ.
• The estimating function Un(θ) is a random variable because it

is a function of Y .
• Maximum likelihood estimation is a special case of estimating

equations with the score (deriv. of log likelihood) acting as the
EF.
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Estimating functions
The corresponding estimating equation that defines the estimator θ̂n
has the form

Un(θ̂n) =
1
n

n∑
i=1

U(θ̂n,Yi) = nU(θ̂n,Yi) = 0. (3)

Suppose that θ̂n is a solution to the estimating equation
Un(θ) =

1
n
∑n

i=1 U(θ,Yi) = 0, i.e. Un(θ̂n) = 0. Then

Var
[
Un(θ̂n)

]
= E

[
(U(θ,Y )− E[U(θ,Y )])⊗2

]
= E[U(θ,Y )U(θ,Y )T ]

Now Un(θ̂n) is a sum of conditionally independent terms, so under
regularity conditions (see Van der Vaart, 1998) we have

Un(θ̂n) ∼ N
(
0,Var

[
Un(θ̂n)

])
.
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Estimating functions

Then, using a first order Taylor expansion, we have

0 = Un(θ̂n) = Un(θ) +

(
∂Un(θ)

∂θ

)
(θ̂n − θ) + op(1)

This gives

(θ̂n − θ) =d −
(
∂Un(θ)

∂θ

)−1
Un(θ).
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Estimating functions
Result 1: Suppose that θ̂n is a solution to the estimating equation
Un(θ) =

1
n
∑n

i=1 U(θ,Yi) = 0, i.e. Un(θ̂n) = 0. Then θ̂n →p θ
(consistency – see Crowder, 1994).

√
n (θ̂n − θ)→d Np(0,A−1BAT−1) (4)

(asymptotic normality) where

A = A(θ) = −E
[
∂

∂θ
Un(θ,Y )

]
,

B = B(θ) = E[Un(θ,Y )Un(θ,Y )T ].

• The form of the variance in (4) has lead to it being called the
sandwich estimator: A−1BAT−1.

Back to g-estimation
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