Marginal effects for time-varying treatments

Erica E. M. Moodie

Department of Epidemiology, Biostatistics, & Occupational Health McGill University Montreal, QC, Canada

erica.moodie@mcgill.ca

W McGill

- What parameters does an MSM actually estimate?
- When and why is an MSM needed?
- How can the parameters of an MSM be estimated?
- Assumptions, cautions, caveats.

Road map

- 1. Marginal effects in a longitudinal treatment setting
 - Definition
 - Failure of standard approaches
- 2. Three approaches to estimations
 - Inverse weighting
 - Forwards regression (g-computation)
 - Recursive regression (g-estimation)
- 3. Assumptions for each of the approaches
- 4. Simple worked example
- 5. Further considerations if time permits

In longitudinal studies we observe for each individual i a sequence of exposures

$$Z_{i1}, Z_{i2}, \ldots, Z_{iJ}$$

and confounders

$$X_{i1}, X_{i2}, \ldots, X_{iJ}$$

along with outcome $Y_i \equiv Y_{iJ}$ measured at the end of the study.

Intermediate outcomes $Y_{i1}, Y_{i2}, \ldots, Y_{i,J-1}$ also possibly available.

In a repeated measures or time-to-event setting, variables can be both intermediate and confounding.

Suppose we are interested in the total effects of treatments Z_1 and Z_2 on survival to time *t*, which we denote *Y*, in the presence of a time-dependent confounder X_2 :

 Z_2 affects *Y* directly:

...and X_2 confounds the relationship between Z_2 and Y:

But Z_1 affects Y indirectly through X_2 :

- Thus, if interested in the *total* effects of a *sequence* of treatment doses on an end-of-study response, standard regression models cannot be used.
- ...but what if there are no intermediate variables? Could we then condition on the time-depending confounders and use standard methods?
 - The answer in general is no.

The potential for bias if there exists an unmeasured, underlying frailty:

Note that there are a variety of configurations that can lead to bias (including of the 'collider-stratification' variety):

- Marginal Structural Models provide a powerful tool to assess the effects of exposures in longitudinal settings (can also be used for cross-sectional data).
 - Models are marginal because they pertain to population-average effects, structural because they describe causal (not associational) effects.
 - Most popular choice of model for data that exhibit time-varying confounding where the confounders are also mediators.

Potential outcomes: longitudinally

- Counterfactual or potential outcomes: the outcomes that would have been observed had a person been exposed to a particular treatment pattern.
- Consider a two-interval setting where data is collected at three times: baseline (t₀), t₁, and t₂, with covariates X_j measured at t_{j-1} (j = 1, 2), treatments Z_j taken between t_{j-1} and t_j (j = 1, 2), and outcome Y measured at t₂.

Potential outcomes

- There are four possible exposure patterns:
 - always exposed $(\boldsymbol{z}_1, \boldsymbol{z}_2) = (1,1)$,
 - never exposed $(\boldsymbol{z}_1, \boldsymbol{z}_2) = (0,0),$
 - only exposed in one interval $(z_1, z_2) = (1,0)$, or (0,1).
- We posit that each person has four responses (one corresponding to each exposure pattern), denoted Y(1, 1), Y(0, 0), Y(1, 0), Y(0, 1), respectively.

- Suppose in reality an individual is treated in both intervals.
- We observed the outcome *Y*, which equals the counterfactual *Y*(1, 1) but we do not observe outcomes under the three other possible exposure patterns.
- Although we cannot observe most potential outcomes, we can use them to help formulate causal models.

Potential outcomes

• Rather than asking

what is the average outcome among people who did receive treatment pattern $(\mathbf{z}_1, \mathbf{z}_2) = (1,1)$?

we can ask

what would be the average outcome among if everyone received treatment pattern $(z_1, z_2) = (1, 1)$?

An MSM is a model for E[Y(z₁, z₂)], i.e. the average outcome if the entire population was exposed to treatment pattern z₁, z₂, for each possible treatment pair.

Potential outcomes

- Since we can only ever observe one of the four counterfactuals, we can recast this as a missing data problem, and up- or down-weight individuals so as to create a population in which treatment receipt is not affected by time-varying covariates.
- Alternatively, we can again view this inverse probability weighting as an importance sampling approach.
- We create a pseudo-population of subjects in which the treatments Z_j and covariates X_j are unassociated, and therefore there exists no time-varying confounding.
 - Because there is no confounding, there is no need to condition on X_i.
 - ▶ By not conditioning on *X_j*, we do not block mediated pathways or induce collider-stratification bias.

Pseudo-population: What does it do?

What assumptions do we need to obtain an unbiased estimator of the marginal mean $\mathbb{E}[Y(z_1, z_2, ..., z_J)]$, via IPW, for some sequence of treatments $z_1, z_2, ..., z_J$?

- Correct model specification (of mean of Z_j given the past $\forall j$)
- No unmeasured confounding *at each interval* → sequential randomization
- Independence
- No extrapolation
- Well-defined exposure

Choice of weights

• Several options for the treatment weights. The simplest are unstandardized weights:

$$w = \{ \Pr(Z_1 = z_1 | X_1) \times \Pr(Z_2 = z_2 | X_1, Z_1, X_2) \}^{-1} \\ = \frac{1}{\Pr(Z_1, Z_2 | X_1, X_2)},$$

i.e., each individual's weight is computed by taking the product of the estimated probability of receiving the treatment he actually received in each interval, conditional on past time-varying covariates (including, potentially, baseline covariates and previous treatment). • It is more common to use standardized weights:

$$sw = rac{\Pr(Z_1 = z_1) \times \Pr(Z_2 = z_2 | Z_1)}{\Pr(Z_1 = z_1 | X_1) \times \Pr(Z_2 = z_2 | X_1, Z_1, X_2)}.$$

• These weights may still be quite variable, particularly if there are some individuals who received unusual treatments given their covariates → can normalize and/or truncate to further reduce variability.

MSM estimation

The MSM estimation procedure via IPW is straightforward:

- 1. Fit treatment models: fit a logistic regression model for the probability of being treated at each interval.
- 2. Determine the weights:
 - (a) Use the models in step (1) to predict the probability that a person received the exposure pattern he did in fact receive, by taking the product of the probability of receiving the observed treatment in each interval.
 - (b) Set each individual's weight to one over the probability computed in (2a). Optionally (recommended): stabilize, normalize, and/or truncate the weights.
- 3. Fit a response model: weighting each individual by the weights computed in (2b), use standard software to fit a regression model for the response given exposure and possibly baseline covariates.

- All confounding covariates should be included in the treatment models; variables that predict only treatment (but not the outcome) can be omitted.
- Automated model selection (e.g., stepwise procedures) should not be used.
- The procedure outlined on the previous slide is valid for any type of outcome, including binary responses or time-to-event (survival) data.
- For time-to-event data, a weighted Cox model can be fit, or time can be discretized (e.g. into months) and a weighted logistic regression on status can be fit.

MSM: sample code for a two-interval example

```
## Final weights, and MSM:
wt <- w1*w2 ## (unstabilized)
msm <- lm(Y~Z1+Z2,weights=wt)
# msm <- lm(Y~Z1*Z2,weights=wt)
summary(msm)
```

MSM: (simulated) HIV example

- Suppose that researchers are interested in the effect of HAART interruptions on liver function in an HIV+ population.
- We simulate an example with n = 100 designed to follow the causal structure below:

MSM: HIV example

- Liver function is measured at baseline (X₁), six months (X₂), and 12 months (Y).
- Exposure Z_1 is a binary indicator of HAART interruption between baseline and month 6, and Z_2 the corresponding indicator for occlusion between months 6 and 12.
- Model 1 adjusts for baseline liver function (*X*₁) only; Model 2 adjusts for both baseline and six-month liver function (*X*₁ and *X*₂).

	are -0.058, and -0.080.												
		Model 1			Model 2								
Variable	$\hat{\beta}$	SE	% bias	Â	È SE	% bias							
Z_1	-0.036	0.0121	6.4	0.213	3 0.009	660.8							
Z_2	-0.074	0.0121	14.2	-0.08	5 0.004	0.9							

Table. Results from traditional regression models. True parameter values are -0.038 and -0.086

MSM: HIV example

- Results of the previous slide are based on a single data set of a modest size (n = 100).
- Repeating the simulation study 10,000 times:
 - the bias of the estimator of β for Z_2 in Model 1 is 6.0%
 - the bias of the estimator of β for Z_1 in Model 2 is 679%
- Repeating the simulation study 10,000 times for n = 5000:
 - the bias of the estimator of β for Z₂ in Model 1 is 6.3%
 - the bias of the estimator of β for Z_1 in Model 2 is 679%

indicating that the bias does not diminish with increasing sample size.

• Using an MSM yields estimates (SE) of -0.039 (0.013) and -0.086 (0.013) for Z_1 and Z_2 , respectively. Repeating the simulation 10,000 with n = 100: bias of less than 0.65% for each parameter.

Example 2: marginal structural models "by hand"

Consider a simple example, where treatment at each interval is beneficial, and receipt of treatment in the second interval is strongly dependent on the intermediate outcome X_2 (with X_2 , Y indicative of a negative outcome):

Example 2: the data

Z ₁ (1)			0 500		1 500						
X2 (a)		0 311	18	1 39	(3() 65	1 135				
Z2	0	1	0	1	0	1	0	1			
(1)	194	117	71	118	227	138	51	84			
Y	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1			
(1)	142 52	96 21	27 44	59 59	166 61	113 25	19 32	42 42			

Following Diggle, Heagerty, Liang & Zeger, §12.5.

$$\widehat{\mathbb{E}}[Y|z_1 = 1, z_2 = 1] = (25 + 42)/(138 + 84) = 0.30 \widehat{\mathbb{E}}[Y|z_1 = 1, z_2 = 0] = (61 + 32)/(227 + 51) = 0.33 \widehat{\mathbb{E}}[Y|z_1 = 0, z_2 = 1] = (21 + 59)/(117 + 118) = 0.34 \widehat{\mathbb{E}}[Y|z_1 = 0, z_2 = 0] = (52 + 44)/(194 + 71) = 0.36$$

The benefit of treatment is not evident here, with 30% experiencing the outcome when receiving treatment in both intervals, compared to 36% when treatment-free, giving an OR of 0.76 (=(0.3/0.7)/(0.36/0.64)).

Alternatively, we obtain the following regression coefficient estimates:

$$logit(\mathbb{E}[Y|z_1 = 1, z_2 = 1]) = -0.56 - 0.13z_1 \\ -0.10z_2 - 0.04z_1z_2.$$

Again, this leads to an OR of $0.76 (= \exp(-0.13 - 0.10 - 0.04))$ for the always- vs never-treated comparison.

Example 2: an (impossible) controller

What if we could control treatment assignment, so that our design is experimental rather than observational? Then:

Z ₁		0								1							
(¤)		0								1000							
X2 (11)		0 0		1 0					0 731								
Z2 (11)	(()		1 0		0 0		1 0		0 0	1 731	L		0 0	1 269		
Y	0	1	0	1	0	1	0	1	0	1	01	3	0	1	0	1	
(n)	0	0	0	0	0	0	0	0	0	0	59813		0	0	134	134	

Example 2: an (impossible) controller

Similarly, if we could prevent the entire population from receiving treatment, we would expect to see:

Z ₁ (1)			0 1000	1 0									
X2 (1)		0 622	1 378		0 0								
Z2 (11)	0 622	1 0	0 378	1 0		0 1 0 0				0 0	1 0		
Y (1)	0 1 455 167	0 1 0 0	0 1 0 143 235 0	1 0	0 0	1 0	0 0	1 0	0 0	1 0	0 0	1 0	

Example 2: results found by the (impossible) controller

$$\widehat{\mathbb{E}}[Y(\boldsymbol{z}_1 = 1, \boldsymbol{z}_2 = 1)] = (134 + 133)/(731 + 269) = 0.267$$

$$\widehat{\mathbb{E}}[Y(\boldsymbol{z}_1 = 0, \boldsymbol{z}_2 = 0)] = (167 + 235)/(622 + 378) = 0.402$$

The benefit of treatment is now more evident here, with 27% experiencing the outcome when receiving treatment in both intervals, compared to 40% when treatment-free, giving an OR of 0.54.

Example 2: IPW

Since we cannot, in reality, control treatment receipt, let us instead perform an analysis that acknowledges the simultaneous roles of X_2 as confounder and mediator.

First, we have to construct weights. We will use stabilized weights, of the form:

$$sw = rac{1}{\Pr(Z_1 = z_1)} \cdot rac{\Pr(Z_2 = z_2 | Z_1 = z_1)}{\Pr(Z_2 = z_2 | X_2 = x_2, Z_1 = z_1)}.$$

where

$$\widehat{\Pr}(Z_1 = 1) = 0.5$$

$$\widehat{\Pr}(Z_2 = 1 | Z_1 = 0) = 0.47$$

$$\widehat{\Pr}(Z_2 = 1 | Z_1 = 1) = 0.444$$

$$\widehat{\Pr}(Z_2 = 1 | X_2 = 0, Z_1 = 0) = 0.367$$

$$\widehat{\Pr}(Z_2 = 1 | X_2 = 1, Z_1 = 0) = 0.624$$

Z ₁ (n)		0 500								1 500								
X_2		0			1					1	1							
(11)		311			189					365					135			
\overline{Z}_{n}		0 1			0 1				0 1			0		1				
(<u>n</u>)	1	94	1	17		71		118	2	227 13		.38	51		84			
Y	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1		
<u>(n)</u>	142	52	96	21	27	44	59	9 59	166	61	113	25	19	32	42	42		
sw	0.85	0.85	1.25	1.25	1.40	1.40	0.76	50.76	0.89	0.89	1.17	1.17	1.47	1.47	0.71	0.7		
n*	120.7	44.2	120	26.3	37.8	61.6	44.8	44.8	147.7	54.3	132.2	29.3	27.9	47.0	29.8	29.8		

Note that sw, the stabilized weights, and n*, the sample size in the reweighted pseudo-population, have been rounded. In practice, rounding should only be done on the final estimate.

Note that we are not weighting by the probability of receiving treatment in both intervals,

$$\frac{1}{\Pr(Z_1=1)} \cdot \frac{\Pr(Z_2=1|Z_1=z_1)}{\Pr(Z_2=1|X_2=x_2,Z_1=z_1)}.$$

but rather by the probability of having received the observed treatment combination (z_1, z_2)

$$sw = rac{1}{\Pr(Z_1 = z_1)} \cdot rac{\Pr(Z_2 = z_2 | Z_1 = z_1)}{\Pr(Z_2 = z_2 | X_2 = x_2, Z_1 = z_1)}.$$

Using the reweighted sample, we now find $\widehat{\mathbb{E}}[Y(1,1)] = (29.3 + 29.8)/(132.2 + 29.3 + 29.8 + 29.8) = 0.27$, and $\widehat{\mathbb{E}}[Y(0,0)] = (44.2 + 61.6)/(120.7 + 44.2 + 37.8 + 61.6) = 0.40$.

We have now seen that:

- 1. When there exists a time dependent confounder, X_j , that acts as a mediator, standard regression models fail.
- 2. When there exists a time dependent confounder, X_j , that is not a mediator, but there exists an unmeasured variable U that affects both X_j and the outcome, standard regression models fail.
- 3. IPW can be used to estimate total effects in a marginal structural model.

Are there any alternatives?

In IPW, the focus is on modelling the treatment process so as to obtain the inverse weights.

In g-computation, the focus is instead of modelling the intermediate covariates, and then to simulate the data forward under treatment regimes of interest.

The basis of g-computation is the "telescoping" sequence of conditional distributions:

$$f(Y, X|Z) = \prod_{j=1}^{J} f(Y_j|H_j) \times f(X_j|H_{j-1}, Y_{j-1})$$

where $H_j = (X_1, Z_1, X_2, ..., X_{j-1}, Z_{j-1}, Y_{j-1}, X_j, Z_j).$

Let's return to the simple example. We have only 1 intermediate covariate, so g-computation requires only models for $Pr(Y = 1|Z_1, X_2, Z_2)$ and $Pr(X_2 = 1|Z_1)$.

Then we can compute

$$\widehat{\mathbb{E}}[Y(1,1)] = \sum_{x_2} \Pr(Y=1|Z_1=1, X_2=x_2, Z_2=1) \cdot \\ \Pr(X_2=x_2|Z_1=1) \\ = (25/138) * (365/500) + (42/84) * (135/500) \\ = 0.267$$

For the no-treatment scenario, we find:

$$\widehat{\mathbb{E}}[Y(0,0)] = \sum_{x_2} \Pr(Y=1|Z_1=0, X_2=x_2, Z_2=0) \cdot \\ \Pr(X_2=x_2|Z_1=0) \\ = (52/194) * (311/500) + (44/71) * (189/500) \\ = 0.401$$

What assumptions do we need to obtain an unbiased estimator of the marginal mean $\mathbb{E}[Y(z_1, z_2, ..., z_J)]$, via g-computation, for some sequence of treatments $z_1, z_2, ..., z_J$?

- Correct model specification (of the mean of Y given the past, and of the *distribution* of X_j given the past ∀j)
- No unmeasured confounding at each interval
- Independence
- No extrapolation
- Well-defined exposure

Note that the first assumption may be difficult to satisfy for moderate dimensionality of X_j , especially if some elements are continuous-valued.

- Yet a third approach to estimating marginal models is known as g-estimation.
- Unbiasedness in the simplest g-estimation method comes through modelling the expected treatment, though there is also a doubly-robust version.
- The focus in g-estimation is on *contrasts* between the treated and untreated.
- The contrasts are called blip functions, and may be simple, e.g. γ(z; h, ψ) = ψz or more complex, e.g. γ(z; h, ψ) = z(ψ₀ + ψ₁x).

Crash course in EEs

Additional considerations

In a one-interval setting, g-estimation proceeds as follows:

- 1. Specify a blip function, $\gamma(\boldsymbol{z}; \boldsymbol{h}, \psi)$ that parameterizes the effect of treatment Z on outcome Y (possibly modified by covariates X).
- 2. Specify a treatment model, $\mathbb{E}[Z|X; \alpha]$ and estimate its parameters (e.g. via logistic regression for binary Z).
- 3. Letting $S(z) = \frac{\partial}{\partial \psi} \gamma(\boldsymbol{z}; \boldsymbol{b}, \psi)$, solve the g-estimating equation:

$$U(\psi) = \sum_{i=1}^{n} \left\{ [Y_i - \gamma(\boldsymbol{z}_i; \boldsymbol{b}_i, \psi)] \cdot [S(\boldsymbol{z}_i) - \mathbb{E}(S(\boldsymbol{z}_i) | \boldsymbol{x}; \alpha)] \right\} = \mathbf{0}.$$

Note that this g-EE is unbiased when the treatment model, $\mathbb{E}[Z|X; \alpha]$, is correctly specified.

Assumptions for simple g-estimation

- Correct model specification (of mean of Z given X)
- No unmeasured confounding
- Independence
- No extrapolation
- Well-defined exposure

G-estimation in one interval: double robustness

In a one-interval setting, the g-estimation procedure can be made 'doubly robust' – and can yield more efficient estimators – by additional positing a model for the treatment-free outcome.

- Let $G(\psi) = Y \gamma(\boldsymbol{z}; \boldsymbol{b}, \psi)$. The $G(\psi)$ is the (possibly counterfactual) treatment-free outcome.
- Let E[G(ψ)|b; η] parameterize a model for the expected value of G(ψ). Note that we can re-write this to see that

$$\mathbb{E}[Y|b;\psi,\eta] = \mathbb{E}[G(\psi)|b;\eta] + \gamma(\mathbf{z};b,\psi).$$

With S(z) = ∂/∂ψ γ(z; h, ψ), the following is a doubly-robust g-estimating equation:

$$U(\psi) = \sum_{i=1}^{n} \left\{ [Y_i - \gamma(\mathbf{z}_i; b_i, \psi) - \mathbb{E}(G(\psi) | b; \eta)] \cdot [S(z_i) - \mathbb{E}(Z_i | x; \alpha)] \right\}$$

= 0.

This g-EE is unbiased when either $\mathbb{E}[Z|X; \alpha]$ or $\mathbb{E}[G(\psi)|b; \eta]$ is correctly specified.

In the multiple interval setting, we need to be careful in our specification of the blip.

We want it to parameterize the following:

$$\gamma_j(\mathbf{z}_j; b_j, \psi_j) = \mathbb{E}[Y(z_1, ..., \mathbf{z}_j, 0, ..., 0) - Y(z_1, ..., z_{j-1}, 0, ..., 0)],$$

i.e. it is a model for the ('true') effect of being treated in the j^{tb} interval, given treatment history $z_1, ..., z_{j-1}$ and assuming no treatment in all subsequent intervals.

This particular form of blip is called a "zero-blip-to-zero" function.

In a *J*-interval setting, g-estimation proceeds from the last interval to the first, recursively estimating the blip parameters:

- 1. At each interval, specify a blip function, $\gamma_j(\mathbf{z}_j; \mathbf{b}_j, \psi_j)$.
- 2. At each interval, specify a treatment model, $\mathbb{E}[Z_j|X_j; \alpha_j]$ and estimate its parameters.
- 3. At the last interval, *J*, set $G_J(\psi_J) = Y \gamma_J(\mathbf{z}_J; b_J, \psi_J)$, and specify $\mathbb{E}[G_J(\psi_J)|b_J; \eta_J]$.

DR g-estimation in multiple intervals (cont.)

where
$$U_j(\psi_j) = \sum_{i=1}^n \left\{ [Y_i - \sum_{k \ge j} \gamma(\mathbf{z}_{ki}; h_{ki}, \psi_k) - \mathbb{E}(G_j(\psi_j) | h_j; \eta_j)] \cdot [S_j(z_{ji}) - \mathbb{E}[S(Z_{ji} | x_j; \alpha_j)]] \right\}$$
 for $j = 1, ..., J$.

DR g-estimation: further considerations

- Like IPW and g-computation, sequential randomization (i.e. no confounders at each interval) is required.
- The treatment models can be allowed to share parameters.
- The blip models can be allowed to share parameters, but the estimation is then more complicated: recursive estimation no longer appropriate and it is difficult to solve the g-EE for all intervals simultaneously.

DR g-estimation: further considerations

- Alternative blip models can also be specified to allow estimation of more complex treatment strategies, e.g. instead of all-or-nothing contrasts, we can specify 'optimal' blip functions that allow us to estimate optimal, personalized treatment strategies.
- Applying g-estimation to continuous exposures is straightforward.
- Applying g-estimation to binary or time-to-event outcomes is often not.
- DRTreg package in R can be used for estimation.

Additional considerations: SEs and CIs

- All of the approaches considered (IPW/AIPW, g-computation, g-estimation) rely on substitution estimators.
 - ► In IPW, we plug in estimated weights; AIPW uses plug in weights and mean outcomes.
 - In g-computation, we simulate the outcome using estimated models.
 - In g-estimation, we plug in estimated weights and possibly also estimated treatment-free outcomes.
- We need to account for this when estimating standard errors and/or confidence intervals.
- Analytically derived asymptotic variances can also be used, but are not provided in standard software packages.
- The easiest approach is to bootstrap.

Additional considerations: missing data

- If data are missing intermittently, one can either impute or censor an individual at the first instance of missing data.
- Censored data (drop-out) can easily be handled by incorporating weights for censoring into the regression model or estimating equation for any of the three approaches that we have considered.

Additional considerations: timing of the exposure

When covariates are time-dependent, there are several aspects of the analysis that require consideration

- Cumulative vs. current exposure
 - Driven by scientific/biological effect
 - E.g. Current smoking status or pack-years smoked?, dose of a medication since last visit or dose since start of study?, etc.
- Time lag
 - Again, driven by scientific/biological effect
 - E.g. Incubation period of pathogens, latency period for carcinogens/cancer, etc.

Additional considerations: timing of the exposure

- Whenever possible, use biological knowledge to inform the model.
- A commonly used approach is to cumulate the exposure (summing the number of exposed intervals).
- Although there are some models that try to learn about this lag from the data ("weighted cumulative exposure" models), these can be very unreliable.
 - WCE models include an indicator for exposure (yes/no) over many, many lagged time points and then attempts to learn from the data how exposure affects the outcome using a smooth function.

Idealized weight functions

Weight function of exposures

Realized weight functions (simulated data, exponential weights)

Realized weight functions (simulated data, normal weights)

An actual (estimated) weight function

Time-varying covariates & causal inference: Summary

- We have looked at three approaches to estimating marginal structural models:
 - Marginal structural models
 - G-computation
 - G-estimation
- The first of these provides marginal (population average) parameters, while the other two can provide results that are conditional on time-varying covariates.
- These approaches can be used where standard methods fail: in particular, when time-varying covariates exist and act as mediating variables.

Key points: Summary

- When exposures vary over time, there is a the potential for greater complexity in the data structure, particularly if variables act as both mediators and confounders.
- MSMs are straight-forward to compute and allow estimation of a range of parameters including population average effects under specific exposure patterns, and the decomposition of effects into the effect mediated through a variable and the "remainder" of the effect which is not.
- G-computation and G-estimation require a bit more statistical and computational expertise to implement, but also afford more flexibility.

Key points: Why use MSMs?

- Standard regression models yield biased estimates of treatment effects when:
 - (i) in a time-dependent exposure setting, some mediating variables are also confounders, or
 - (ii) in a time-dependent exposure setting, there exists an unmeasured variable that causes changes in a confounder and the outcome, or
 - (iii) in a mediation analysis if any of the confounders of mediator-outcome relationship are caused by the exposure.
- MSMs can also be used in other settings to adjust for confounding, e.g. a cross-sectional study (but typically aren't: why use them if a simpler approach will suffice?)
- MSMs are useful even in RCTs not for an ITT analysis, but for secondary analyses when there is non-compliance or attrition.

Key points: Why use MSMs?

- MSMs are often criticized for their reliance on strong assumptions, however *all* statistical analyses rely on assumptions, many of which are the same.
- In a standard regression setting (e.g. cross-sectional data), let's quickly review the "MSM assumptions":
 - No unmeasured confounding.
 - Correct model specification (treatment and response).
 - Exposed and unexposed individuals at every covariate combination (positivity).
 - Exposures must be well-defined.
 - No interference between participants.

Each of these is required to draw sensible interpretations from a standard regression model!

Collaborator: David Stephens (McGill)

Selected references:

- Robins, Hernán, & Brumback (2000) Marginal structural models and causal inference in epidemiology. *Epidemiology*, 11: 550–560.
- Hernán, Brumback, & Robins (2000) Marginal structural models to estimate the causal effect of Zidovudine on the survival of HIV-positive men. *Epidemiology*, **11**: 561–570.
- Bryan, Yu, & van der Laan (2004) Analysis of longitudinal marginal structural models. *Biostatistics*, **5**: 361–380.
- Bodnar, Davidian, Siega-Riz, & Tsiatis (2004) Marginal structural models for analyzing causal effects of time-dependent treatments: An application in perinatal epidemiology. *American Journal of Epidemiology*, **159**: 926–934.

References, continued:

- Analysis of Longitudinal Data (2nd ed., 2002) by Diggle, Heagerty, Liang and Zeger.
- Moodie & Stephens (2010) Using Directed Acyclic Graphs to detect limitations of traditional regression in longitudinal studies. *Int J Public Health*, **55**: 701–703.
- Moodie & Stephens (2011) Marginal structural models: Unbiased estimation for longitudinal studies. *Int J Public Health*, **56**: 117–119.
- Thorpe, Saeed, Moodie, and Klein (2011) Antiretroviral treatment interruption leads to progression of liver fibrosis in adults co-infected with HIV and Hepatitis C. *AIDS*, **25**: 967–975.
- Causal Inference (2016?) by Hernán & Robins, www.hsph.harvard.edu/miguel-hernan/causal-inference-book/

A crash course in estimating functions

Two main approaches to inference

Estimating Functions:

- A function of the parameter and data, U(θ, Y), of the same dimensionality as the parameter, for which E[U(θ, Y)] = 0 is considered.
- The EF estimator is then found as the solution to the estimating equation U(θ̂, Y) = 0.
- For inference, the frequency properties of the estimating function are derived and these are transferred to the resultant estimator.
- Often the estimating function is derived from a likelihood.

Bayesian:

- In addition to the likelihood $p(y|\theta)$, specify a prior distribution $\pi(\theta)$.
- Then via Bayes theorem derive the posterior distribution $p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta) \times \pi(\theta)}{p(\mathbf{y})}$.
- All inference follows from the posterior distribution.

Estimating functions

• An estimating function is a function

$$U_n(\theta) = \frac{1}{n} \sum_{i=1}^n U(\theta, Y_i)$$
(1)

of the same dimension as θ for which

$$\mathbb{E}[U_n(\theta)] = 0 \tag{2}$$

for all θ .

- The estimating function $U_n(\theta)$ is a random variable because it is a function of Y.
- Maximum likelihood estimation is a special case of estimating equations with the score (deriv. of log likelihood) acting as the EF.

Estimating functions

The corresponding estimating equation that defines the estimator $\hat{\theta}_n$ has the form

$$U_n(\widehat{\theta}_n) = \frac{1}{n} \sum_{i=1}^n U(\widehat{\theta}_n, Y_i) = {}_n U(\widehat{\theta}_n, Y_i) = 0.$$
(3)

Suppose that $\widehat{\theta}_n$ is a solution to the estimating equation $U_n(\theta) = \frac{1}{n} \sum_{i=1}^n U(\theta, Y_i) = 0$, i.e. $U_n(\widehat{\theta}_n) = 0$. Then $Var\left[U_n(\widehat{\theta}_n)\right] = \mathbb{E}\left[(U(\theta, Y) - \mathbb{E}[U(\theta, Y)])^{\otimes 2}\right]$ $= \mathbb{E}[U(\theta, Y)U(\theta, Y)^T]$

Now $U_n(\hat{\theta}_n)$ is a sum of conditionally independent terms, so under regularity conditions (see Van der Vaart, 1998) we have

$$U_n(\widehat{\theta}_n) \sim \mathcal{N}\left(0, \operatorname{Var}\left[U_n(\widehat{\theta}_n)\right]\right).$$

Then, using a first order Taylor expansion, we have

$$0 = U_n(\widehat{\theta}_n) = U_n(\theta) + \left(\frac{\partial U_n(\theta)}{\partial \theta}\right)(\widehat{\theta}_n - \theta) + o_p(1)$$

This gives

$$(\widehat{\theta}_n - \theta) =_d - \left(\frac{\partial U_n(\theta)}{\partial \theta}\right)^{-1} U_n(\theta).$$

Estimating functions

Result 1: Suppose that $\widehat{\theta}_n$ is a solution to the estimating equation $U_n(\theta) = \frac{1}{n} \sum_{i=1}^n U(\theta, Y_i) = 0$, i.e. $U_n(\widehat{\theta}_n) = 0$. Then $\widehat{\theta}_n \to_p \theta$ (consistency – see Crowder, 1994).

$$\sqrt{n} \left(\widehat{\theta}_n - \theta\right) \to_d \mathcal{N}_p(0, A^{-1}BA^{T-1}) \tag{4}$$

(asymptotic normality) where

$$A = A(\theta) = -\mathbb{E}\left[\frac{\partial}{\partial \theta}U_n(\theta, Y)\right],$$

$$B = B(\theta) = \mathbb{E}[U_n(\theta, Y)U_n(\theta, Y)^T].$$

• The form of the variance in (4) has lead to it being called the sandwich estimator: $A^{-1}BA^{T-1}$.

Back to g-estimation